Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(0,25+\frac{3}{4}:1,25+1\frac{1}{3}:2\right)\)\(=\left(\frac{1}{4}+\frac{3}{4}\right):\frac{5}{4}+\frac{4}{3}:2\)\(=\frac{4}{5}+\frac{2}{3}=\frac{22}{15}\)
b) \(2^3+3\left(\frac{-3}{2}\right)^0.\left(\frac{1}{2}\right)^2.4+\left[\left(-2\right)^2:\frac{1}{2}\right]:8\)\(=8+3.1.\frac{1}{4}.4+\left[4:\frac{1}{2}\right]:8\)
\(=8+3+8:8=\frac{19}{8}\)
\(A=\left(-2\right)\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)...\left(-1\frac{1}{214}\right)\)
\(=2.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{215}{214}=215\)
\(B=\left(-1\frac{1}{2}\right).\left(-1\frac{1}{3}\right).\left(-1\frac{1}{4}\right)....\left(-1\frac{1}{299}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{300}{299}=\frac{300}{2}=150\)
\(C=-\frac{7}{4}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{333333}{424242}\right)\)
\(=-\frac{7}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
\(=-\frac{7}{4}.33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}\left(\frac{1}{3}-\frac{1}{7}\right)\)
\(=-\frac{231}{4}.\frac{4}{21}=-11\)
iem chỉ biết làm câu đầu , NHƯNG KO BÍT có ĐUG HAY KO
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\)
\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2018\cdot2019}{2\cdot3\cdot4\cdot..\cdot2019\cdot2020}\)
\(A=\frac{1}{2020}\)
Với \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{2019}\right)\left(1-\frac{1}{2020}\right)\) , ta có : \(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot....\cdot\frac{2018}{2019}\cdot\frac{2019}{2020}=\frac{1}{2020}\)
Ta có \(7A=\frac{7}{2020}\) , \(9A=\frac{9}{2020}\) , \(1+A=\frac{2021}{2020}\)
\(\frac{1+7A}{1+9A}=\frac{1+\frac{7}{2020}}{1+\frac{9}{2020}}=\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)
Ta thấy \(\frac{\frac{2027}{2020}}{\frac{2029}{2020}}\)có tử kém mẫu \(\frac{2}{2020}\)đơn vị và không thể rút gọn được nữa .
\(\Rightarrow\frac{1+7A}{1+9A}\)là p/s tối giản.
a,\(\frac{-2}{5}+\frac{7}{21}=\frac{-2}{5}+\frac{1}{3}=\frac{-6}{15}+\frac{5}{15}=\frac{-1}{15}\)
b,\(\left(\frac{1}{3}\right)^5.3^5-2020^0=\left(\frac{1}{3}.3\right)^5-1=1^5-1=1-1=0\)
c,\(\left(-\frac{1}{4}\right).6\frac{2}{11}+3\frac{9}{11}.\left(-\frac{1}{4}\right)\)
\(=\left(-\frac{1}{4}\right).\left(6\frac{2}{11}+3\frac{9}{11}\right)=\left(-\frac{1}{4}\right).\left[\left(6+3\right)+\left(\frac{2}{11}+\frac{9}{11}\right)\right]\)
\(=\left(-\frac{1}{4}\right).\left[9+1\right]=\frac{-1}{4}.10=\frac{\left(-1\right).10}{4}=\frac{\left(-1\right).5}{2}=\frac{-5}{2}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2021}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right)....\left(-\frac{2020}{2021}\right)\)
\(=\frac{1.2.3...2020}{2.3.4...2021}=\frac{1}{2021}\)
Ta có
(1−1/2)×(1−1/3)×(1−1/4).....×(1−1/2020)×(1−1/2021)(1-1/2)×(1-1/3)×(1-1/4).....×(1-1/2020)×(1-1/2021)
=1/2×2/3×3/4.....×2019/2020×2020/2021=1/2×2/3×3/4.....×2019/2020×2020/2021
=1×2×3×.....×2019×2020/2×3×4×....×2020×2021=1×2×3×.....×2019×2020/2×3×4×....×2020×2021
=1/2021