Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{3n+4}{n-1}\)là số nguyên thì:
\(3n+4⋮n-1\)
Mà \(3\left(n-1\right)⋮n-1\)
nên \(3n+4-3\left(n-1\right)⋮n-1\\ \Rightarrow7⋮n-1\)
\(\Rightarrow\left(n-1\right)\inƯ\left(7\right)=\left\{1;-1;7;-7\right\}\)
\(\Rightarrow n\in\left\{2;0;8;-6\right\}\)
Bài kia bạn nhân 3n+1 lên 2 lần rồi làm tương tự
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
a) \(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)là số nguyên tương đương với \(\frac{2}{n-1}\)là số nguyên
mà \(n\)là số nguyên nên \(n-1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-1,0,2,3\right\}\).
b) \(\frac{3n+1}{n+1}=\frac{3n+3-2}{n+1}=3-\frac{2}{n+1}\)là số nguyên tương đương với \(\frac{2}{n+1}\)là số nguyên
mà \(n\)là số nguyên nên \(n+1\inƯ\left(2\right)=\left\{-2,-1,1,2\right\}\Leftrightarrow n\in\left\{-3,-2,0,1\right\}\).
\(a,\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}\)
\(=3-\frac{5}{n+1}\)
\(\text{Để }\frac{3n-2}{n+1}\in Z\)
\(\Rightarrow3-\frac{5}{n+1}\in Z\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n=\left\{0;4;-2;-6\right\}\)
a) n + 4/ n + 3 là số nguyên
=> n + 4 chia hết n + 3
=> (n + 3) + 1 chia hết n + 3
=> n + 3 chia hết n + 3 và 1 chia hết n + 3
=> n + 3 thuộc ước của 1 = ( 1:-1)
ta có bảng n+ 3 1 -1
n -2 -4
b) n-1/n-3 là một số nguyên
=> n – 1 chia hết n – 3
=> (n – 3) + 2 chia hết n – 3
=>n-3 chia hết n - 3 và 2 chia hết n - 3
=> n – 3 thuộc ước của 2(1;-1;2;-2)
Ta có bảng
n-3 1 -1 2 -2
n 4 2 5 1