Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số học sinh giỏi ,khá trung bình lần lượt là a,b,c(a,b,c thuộc N)
theo đề bài a+b-c = 45
va a/2 =b/5=c/6
áp dụng tính chất dãy tỉ số bằng nhau ,ta có
a/2=b/5=c/6=a+b-c/2+5-6=45/1=45
=>a/2=45 =>a=90
b/5=45=>b=225
c/6=45=>c=270
b)số học sinh khối 7 là 90+225+270+15=600(hs)
c)hs giỏi đạt số phần trăm là90/600 . 100= 15%( số hs khối 7)
khá 225/600 . 100=37.5 %(số hs khối 7)
trung bình 270/ 600 . 100= 45 %( số hc khối 7)
kém 15/600 . 100= 2.5 % ( số hs khối 7)
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Gọi số hs giỏi, khá, tb lần lượt là \(a,b,c(hs;a,b,c\in \mathbb{N^*})\)
Áp dụng tc dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=\dfrac{60}{1}=60\\ \Leftrightarrow\left\{{}\begin{matrix}a=120\\b=300\\c=360\end{matrix}\right.\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại D
Chứng minh
Kẻ DH vuông góc với AB
, kẻ DK vuông góc với AC
. Chứng minh rằng AH = AK. Chứng minh đường thằng HK song song với BC.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b-c}{2+5-6}=60\)
Do đó: a=120; b=300; c=360
Gọi số HS trung bình, khá, giỏi lần lượt là a,b,c(học sinh)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{45}{9}=5\)
\(\Rightarrow\left\{{}\begin{matrix}a=5.2=10\\b=5.3=15\\c=5.4=20\end{matrix}\right.\)
Vậy....
Gọi số học sinh loại giỏi, khá, trung bình, yếu lần lượt là \(x,y,z,t\)(bạn).
Ta có:
\(\frac{x}{9}=\frac{y}{15}=\frac{z}{20}=\frac{t}{2}\), \(x+y+t-z=102\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{15}=\frac{z}{20}=\frac{t}{2}=\frac{x+y-z+t}{9+15-20+2}=\frac{102}{6}=17\)
\(\Leftrightarrow x=153,y=255,z=340,t=34\).