K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

 

1/

a/ \(P\left(x\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow-\left[\left(x-2\right)^2+1\right]\le-1\Rightarrow P\left(x\right)<0\)

b/ \(Q\left(x\right)=-\left(9x^2-24x+16+32\right)=-\left[\left(3x-4\right)^2+32\right]\)

Tương tự như câu a => Q(x)<0

2/

b/ \(B=-\left(x^2-4x+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)

Ta có \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-5\ge-5\Rightarrow-\left[\left(x-2\right)^2-5\right]\le5\)

=> GTLN(B)=5

c/ Nhân phá ngoặc, rút gọn được

\(C=-x^2\left(x^2+10x+25\right)+36=-x^2\left(x+5\right)^2+36\)

Lý luận tượng tự câu b => \(C\le36\)

=> GTLN(C)=36

 

9 tháng 7 2016

giúp tôi làm bài trên đi

6 tháng 1 2016

cac giup minh di minh sap phai nop roi

6 tháng 1 2016

a2+4b2+4c2>= 4ab-4ac+8bc

a2+4b2+4c2 - 4ab +4ac-8bc

(a2 - 4ab+4b2)+4c2+(4ac-8bc>=0)

suy ra (a-2b2)+2.2c.(a-2b)+(2c)2

(a-2b+2c)2>=0

dau = xảy ra khi va chỉ khi a+2c=2b

a2+4b2+4c2>= 4ab-4ac+8bc(dpcm)

1 tháng 7 2018

1/

a,\(A=x-x^2=-x^2+x=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(-\left(x-\frac{1}{2}\right)^2\le0\Rightarrow A=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Amax=1/4 khi x=1/2

b, \(B=2x-2x^2-5=-2x^2+2x-5\)

\(\Rightarrow2B=-4x^2+4x-10=-\left(4x^2-4x+1\right)-9=-\left(2x-1\right)^2-9\)

Vì \(-\left(2x-1\right)^2\le0\Rightarrow2B=-\left(2x-1\right)^2-9\le-9\Rightarrow B\le\frac{-9}{2}\)

Dấu "=" xảy ra <=>x=1/2

Vậy Bmax=-9/2 khi x=1/2

2/

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

30 tháng 8 2015

a+b+c=0<=>a^2+b^2+c^2+2ab+2bc+2ca=0

<=>a^2+b^2+b^c=-2ab-2bc-2ca

<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2+8abc(a+b+c)

<=>(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2(vì a+b+c=0)(1)

 

(a^2+b^2+c^2)^2=4a^2b^2+4b^2c^2+4c^2a^2

<=>a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2=4a^2b^2+4b^2c^2+4c^2a^2

<=>a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2

<=>2(a^4+b^4+c^4)=4a^2b^2+4b^2c^2+4c^2a^2(2)

Từ (1) và (2)=>Đccm

 

 

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c