Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=1-\left(\sqrt{x}\right)^3=1-x\sqrt{x}\)
b: \(=\left(\sqrt{x}\right)^3+2^3=x\sqrt{x}+8\)
c: \(=\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3=x\sqrt{x}-y\sqrt{y}\)
d: \(=x^3+\left(\sqrt{y}\right)^3=x^3+y\sqrt{y}\)
\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)
\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)
\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)
\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)
\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)
\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)
\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)
\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)
\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)
\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)
\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)
\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)
\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)
\(\text{f)}x-2\sqrt{x-1}-a^2\)
\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)
\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)
Bài 1:
a) \(ĐK:\begin{cases}x^2-4\ge0\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge4\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2;x\ge-2\\x\ge2\end{cases}\)\(\Leftrightarrow x\ge2\)
\(\sqrt{x^2-4}+2\sqrt{x-2}=\sqrt{\left(x-2\right)\left(x+2\right)}-2\sqrt{x-2}=\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)\)
b) \(ĐK;\begin{cases}x+3\ge0\\x^2-9\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x^2\ge9\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x\ge3;x\ge-3\end{cases}\)\(\Leftrightarrow x\ge3\)
\(3\sqrt{x+3}+\sqrt{x^2-9}=2\sqrt{x+3}+\sqrt{\left(x-3\right)\left(x+3\right)}=\sqrt{x+3}\left(2+\sqrt{x-3}\right)\)
baif 2: a) \(\sqrt{x-5}=3\) diều kiện x>=5
pt<=> x-5=9<=>x=14 (thỏa)
b) \(\sqrt{x-10}=-2\) diều kiện x>=10
nhưng ta thầy VT>=0 mà VP<0=> pt trên vô nghiệm
c) \(\sqrt{2x-1}=\sqrt{5}\) diều kiện x>=1/2
pt<=>\(2x-1=5\)<=> x=3(thỏa)
d) \(\sqrt{4-5x}=12\) điều kiện x<=4/5
pt<=> 4-5x=144<=> x=-28 (loại)
Bài 1:a) điều kiện x^2-4>=0 và x-2>=0
<=> x<=-2,x>=2 và x>=2
=> điều kiện là x>=2
b)điều kiện x+3>=0 và x^2-9>=0
<=> x>=-3 và x<=-3, x>=3
=> điều kiện là > x>=3
\(\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)=1-x\sqrt{x}\)
\(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)=x\sqrt{x}+8\)
\(\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=x\sqrt{x}-y\sqrt{y}\)
\(\left(x+\sqrt{y}\right)\left(x^2-x\sqrt{y}+y\right)=x^3+y\sqrt{y}\)
a/ \(\frac{\sqrt{a}-\left(\sqrt{a}\right)^2}{\sqrt{a}-1}\)
=\(\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{\sqrt{a}-1}\)
=\(\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\)
=\(-\sqrt{a}\)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a) \(=\sqrt{a}\left(\sqrt{a}-1\right)\)
b) \(=\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2\)
c) \(=\left(\sqrt{x}\right)^2-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
d) \(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
f) \(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)