Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Ta có: BC=BH+CH
nên BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\\CH=\dfrac{12^2}{15}=\dfrac{144}{15}=9,6\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow AH^2=9^2-5.4^2=51,84\)
hay AH=7,2(cm)
A H B C 8 8 Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !
Ta có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\left(cm\right)\)
Ta có: \(AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{4^2}{5}=\dfrac{16}{5}\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8$ (cm)
$CH=BC-BH=5-1,8=3,2$ (cm)
Xét ΔBAC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{41}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}HB\cdot BC=AB^2\\HC\cdot BC=AC^2\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{16\sqrt{41}}{41}\left(cm\right)\\HC=\dfrac{25\sqrt{41}}{41}\left(cm\right)\\AH=\dfrac{20\sqrt{41}}{41}\left(cm\right)\end{matrix}\right.\)
Đlí pytago:BC2=AB2+AC2
BC2=42+52
BC=\(\sqrt{16+25}\)
BC=6,4
ĐLÍ 1 :AB2=BH.BC
BH=42:6,4
BH=2,5
ĐLÍ 1: AC2=HC.BC
HC=52:6,4
HC=3,9
ĐLÍ 2 :AH2=BH.HC
AH2=2,5.3,9
AH\(=\sqrt{9,75}=3,1\)