K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

a/ Ta có: \(AB=AC\Leftrightarrow AD+BD=AE+CE\). Mà BD = CE (gt)

\(\Rightarrow AD=AE\)

Vậy: △ADE cân tại A (đpcm)

==========

b/ Ta có: △ADE cân tại A \(\Rightarrow\hat{ADE}=\dfrac{180\text{ }\text{˚}-\hat{A}}{2}\)

△ABC cân tại A \(\Rightarrow\hat{ABC}=\dfrac{180\text{˚}-\hat{A}}{2}\)

- Mà 2 góc này ở vị trí đồng vị

Vậy: DE // BC (đpcm)

==========

c/ DE // BC (cmt) ⇒ Tứ giác BDEC là hình thang

- BDEC có \(\hat{B}=\hat{C}\)

Vậy:Tứ giác BDEC là hình thang cân (đpcm)

Chúc bạn học tốt!

3 tháng 9 2021

thx bạn nhiều

 

a) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AB=AC;AD=AE\right)\)

D\(\in\)AB(gt)

E\(\in\)AC(gt)

Do đó: DE//BC(Định lí Ta lét đảo)

Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

27 tháng 8 2021

a, Vì AD = AE nên \(\Rightarrow\Delta ADE\)là tam giác cân tại A 

\(\Rightarrow gócADE\)\(=\frac{180^o-A}{2}\)

Vì \(\Delta ABC\)cân tại A nên

Góc CBA = \(\frac{180^o-A}{2}\)

\(\Rightarrow ADE=CBA\)( mà 2 góc này nằm trong vị trí so le trong )

\(\Rightarrow\)\(DE//BC\)

Mà \(ABC=ACB\)(Vì tam giác ABC cân tại A ) 

\(\Rightarrow\)Tứ giác BDEC là hình thang cân

b, 

Ta có :

^A \(=70^o\)\(\Rightarrow\)^B=^C =\(55^O\)

\(\Rightarrow BDE=CED=\frac{\left(360-2\cdot55\right)}{2}=125^O\)

28 tháng 9 2020

Thịnh có 15 hòn bi. Số bi của Thịnh hơn Khánh là 3 hòn. Nếu số bi của Huy thêm 4 hòn thì sẽ bằng số bi của Khánh. Hỏi cả ba bạn có bao nhiêu hòn bi.

28 tháng 9 2020

liên quan vậy bạn

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).a) Chứng minh PCMQ là hình chữ nhật b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.Bài 2: CHo tam giác ABC. Gọi O...
Đọc tiếp

#Toán_8 CÁC anh chị (các bạn ) giải giúp em mấy bài này với!

Bài 1: Tam giác ABC vuông cân tại C. Trên cạnh AC, BC lấy lần lượt các điểm P,Q sao cho AP=CQ. Từ P vẽ PM song song với BC. (M thuộc AB).
a) Chứng minh PCMQ là hình chữ nhật 
b) Gọi I là trung điểm MQ. CHứng minh rằng khi P di chuyển trên cạnh AC; Q di chuyển trên cạnh BC thì I di chuyển trên một đoạn thẳng cố định.

Bài 2: CHo tam giác ABC. Gọi O là một điểm thuộc miền trong tam giác. M ,N,P,Q lần lượt là trung điểm các đoạn OB , OC, AC và AB.
a) CM MNPQ là hình bình hành
b) Xác định vị trí của O để MNPQ là hình chữ nhật.

Bài 3: Cho tam giác ABC (AB<AC) . Trên AB lấy điểm D. Trên AC lấy điểm E sao cho BD=CE. Gọi I ; K lần lượt là trung điểm của BC và DE. Kéo dài IK cắt AB; AC lần lượt tại M và N. CMR: tam giác AMN cân.

0