Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
"Chấm" nhẹ hóng cao nhân ạ :)
P/s: mong các bác giải theo cách lớp 8 ạ :) Tặng 5SP / 1 câu nhé ;)
Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))
Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt
Dùng hằng mở rộng số 4
Ta có :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\) (1)
Lại có :
\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)
<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)
Thay 1 vào
=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2\)
\(\text{Mà }\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\Rightarrow2ab+2bc+2ac=0\)
\(\Rightarrow\hept{\begin{cases}2ab=-2bc-2ac\\2bc=-2ac-2ab\\2ac=-2ab-2bc\end{cases}}\)
\(A=\frac{a^2}{a^2-2ab-2ac}+\frac{b^2}{b^2-2ab-2bc}+\frac{c^2}{c^2-2bc-2ac}\)
\(A=\frac{a^2}{a.\left(a-2b-2c\right)}+\frac{b^2}{b.\left(b-2a-2c\right)}+\frac{c^2}{c.\left(c-2b-2c\right)}\)
\(A=\frac{a}{a-2b-2c}+\frac{b}{b-2a-2c}+\frac{c}{c-2b-2c}\)
Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)
Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)
Ta có:
\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)
Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)
\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)
Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)
\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)
Ta có:\(a+b+c=0\)
\(\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow ab+bc+ca=0\)
Lại có: \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
\(=\frac{b^3c^3+c^3a^3+a^3b^3}{abc}\)
\(=\frac{\left(ab+bc+ca\right)\left[a^2b^2+b^2c^2+c^2a^2-abc\left(a+b+c\right)\right]+3a^2b^2c^2}{abc}\)
\(=\frac{3a^2b^2c^2}{abc}=3abc\)
Hai dòng trên mình làm tắt.Chỗ đó mình dùng BĐT sau nhưng phải chứng minh, ko đc áp dụng luôn:
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^2+2\left(\frac{1}{a}+\frac{1}{b}\right)\frac{1}{c}+\left(\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\left(\frac{1}{a}\right)^2+2\frac{1}{a}.\frac{1}{b}+\left(\frac{1}{b}\right)^2+2\left(\frac{1}{ac}+\frac{1}{bc}\right)+\left(\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\left(\frac{1}{ac}+\frac{1}{bc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{a+b+c}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Bài 2 :
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)
( Do \(a+b+c=abc\) )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)
P/s : Cho hỏi bài 1 có a,b,c > 0 không ?
Khuyến mãi thêm bài 1 :))
Áp dụng BĐT AM-GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)
Tương tự ta có :
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)
Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)