Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(a,\left(3x+2\right)^2=9x^2+12x+4.\)
\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)
\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)
\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)
\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)
\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)
Bài 2 :
\(a,A=9x^2+42x+49=9+42+49=100.\)
\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)
\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)
\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)
\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)
\(=\left(8-7\right)\left(4-7\right)=-3\)
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
a,A=3x^2y^4+5x^3+xy-3x^2y^4
A=5x3 +xy
=> bậc của A là 3
b,B=7x^3y.(-4x^2y^2)+17x^2y^3-4x^2y+28x^2y^4
=> bậc của B là 8
c,C=5x^4y^2-7x^3y^2.(-2xy^2)-5x^4y^2+x^3-14x^4y^4
C = 5x4y2 -7x3y2 (-2xy2) - 5x4y2 +x3 -14x4y4
C = 5x4y2 + 14x4y4 -5x4y2 +x3 -14x4y4
C = x3
=> Bậc của C là 3
a) \(A\left(x\right)=-1+5x^6-6x^2-5-9x^6+4x^4-3x^2\)
\(\Rightarrow A\left(x\right)=\left(-1-5\right)+\left(5x^6-9x^6\right)-\left(6x^2+3x^2\right)+4x^4\)
\(\Rightarrow A\left(x\right)=-6-4x^6-9x^2+4x^4\)
\(\Rightarrow A\left(x\right)=-4x^6+4x^4-9x^2-6\)
\(B\left(x\right)=2-5x^2+3x^4-4x^2+3x+x^4-4x^6-7x\)
\(\Rightarrow B\left(x\right)=-4x^6+\left(3x^4+x^4\right)-\left(5x^2+4x^2\right)+\left(3x-7x\right)+2\)
\(\Rightarrow B\left(x\right)=-4x^6+4x^4-9x^2-4x+2\)
b) Đa thức A(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là -6.
Đa thức B(x) có bậc là 6, hệ số cao nhất là -4, hệ số tự do là 2.
c) \(C\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-4x^6+4x^4-9x^2-6\right)-\left(-4x^6+4x^4-9x^2-4x+2\right)\)
\(\Rightarrow C\left(x\right)=-4x^6+4x^4-9x^2-6+4x^6-4x^4+9x^2-4x+2\)
\(\Rightarrow C\left(x\right)=\left(-4x^6+4x^6\right)+\left(4x^4-4x^4\right)+\left(-9x^2+9x^2\right)-4x+\left(-6+2\right)\)
\(\Rightarrow C\left(x\right)=-4x-4\)
Xét \(C\left(x\right)=0\) \(\Rightarrow-4x-4=0\) \(\Rightarrow-4x=4\) \(\Rightarrow x=-1\)
Vậy \(C\left(x\right)=-4x-4\) có 1 nghiệm là \(x=-1\)
Ez thôi mà :)
B1: S = 1 + 2 + 3 + .. .+ n
=> S = ( n + 1 ) . n : 2 = aaa
=> S = ( n + 1 ) . n = 2aaa
Ta có: aaa = 111 . a = 37 . 3 . a
=> 2aaa = 37 . 6 . a
Mà ( n + 1 ) . n là 2 số tự nhiên liên tiếp => 6a = 36 => a = 6
=> ( n + 1 ) . n = 37 . 36
=> n = 36
B2: Đề sai thì phải -_- T sửa lại
(x + 2) + (4x + 4) + (7x + 6) + ... + (25x + 18) + (28x + 20) = 1560
<=> (x + 4x + 7x + ... + 25x + 28x) + (2 + 4 + 6 + ... + 18 + 20) = 1560
<=> 145x + 110 = 1560
<=> 145x = 1450
<=> x = 10