\(\left|x-3,5\right|+\left|y-1,3\right|=0\)

Bài 2: Tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

bai 1 :Ta co |x-3,5| >hoac=0

              va |y-1,3| >hoac=0 nen |x-3,5|+|y-1,3|=0 <=> x-3,5=0 va y-1,3=0

                                                                        =>x=-3,5 va y=-1,3

bai 2:   ta co

A=|x-500| +|x-300| =|x-500|+|300-x|

=>A > hoac =|x-500+300-x|=|-200|=200

dau = xay ra<=>(x-500).(300-x)=0 =>300< hoac=x< hoac =500


 

                 

21 tháng 9 2016

Bài 1 :

Ta có : \(\left|x-3,5\right|\ge0\) với mọi x

            \(\left|y-1,3\right|\ge0\) với mọi x

 \(\Rightarrow\left|x-3,5\right|+\left|y-1,3\right|\ge0\) với mọi x

Mà \(\left|x-3,5\right|+\left|y-1,3\right|=0\)

\(\Rightarrow\hept{\begin{cases}\left|x-3,5\right|=0\\\left|y-1,3\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3,5=0\\y-1,3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3,5\\y=1,3\end{cases}}\)

Bài 2 :

Ta có : \(\left|x-500\right|\ge0\) với mọi x

            \(\left|x-300\right|\ge0\) với mọi x

\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge0\) với mọi x

Câu này mk ko bít, làm tới đây đc thôi à

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

16 tháng 7 2015

ĐTV sai òi

GTNN cảu P = 0 tại y = 2012 ; x = 4018 

GTNN của P = 2015 khi y= 1 ; x = 2

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

10 tháng 9 2016

3 ) \(A=5+\left|\frac{1}{3}-x\right|\)

Ta có : \(\left|\frac{1}{3}-x\right|\ge0\)

\(\Rightarrow5+\left|\frac{1}{3}-x\right|\ge5\)

Dấu " = " xảy ra  khi và chỉ khi \(\frac{1}{3}-x=0\)

                                                     \(\Leftrightarrow x=\frac{1}{3}\)             

Vậy \(Min_A=5\) khi và chỉ khi \(x=\frac{1}{3}\)

\(B=2-\left|x+\frac{2}{3}\right|\)

Ta có : \(\left|x+\frac{2}{3}\right|\ge0\)

\(\Rightarrow2-\left|x+\frac{2}{3}\right|\ge2\)

Dấu " = " xảy ra khi và chỉ khi \(x+\frac{2}{3}=0\)

                                                    \(x=-\frac{2}{3}\)

Vậy \(Min_B=2\) khi và chỉ khi \(x=-\frac{2}{3}\)

21 tháng 6 2017

c, Vì \(\left\{{}\begin{matrix}\left|x-5,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\) với mọi x

=>\(\left|x-5,4\right|+\left|2,6-x\right|\ge0\) với mọi x

Do đó \(\left|x-5,4\right|+\left|2,6-x\right|=0\) khi và chỉ khi \(\left\{{}\begin{matrix}\left|x-5,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=5,4\\x=2,6\end{matrix}\right.\)(vô lí)

Vậy không tồn tại x thỏa mãn đề bài.

3,c,

\(C=\left|x-500\right|+\left|x-300\right|=\left|x-500\right|+\left|300-x\right|\ge\left|x-500+300-x\right|=\left|-200\right|=200.\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-500\right)\left(300-x\right)\ge0\)

<=>\(\left(x-500\right)\left(x-300\right)\le0\)

<=>\(300\le x\le500\).

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)

2 tháng 12 2019

Nhanh lên nhé mình xin các bạn đấy

9 tháng 12 2016

a)\(f\left(-1\right)=\left(-1\right)^2+5\cdot\left(-1\right)=1+\left(-5\right)=-4\)

\(f\left(-2\right)=\left(-2\right)^2+5\cdot\left(-2\right)=4+\left(-10\right)=-6\)

\(f\left(0\right)=0^2+5\cdot0=0\)

b)\(f\left(x\right)=-6\Leftrightarrow x^2+5x=-6\)

\(x^2+5x-\left(-6\right)=0\)

\(x^2+5x+6=0\)

\(x^2+2x+3x+6=0\)

\(x\left(x+2\right)+3\left(x+2\right)=0\)

\(\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow x+2=0\) hoặc x+3=0

\(\Rightarrow\)x=-2 hoặc -3

9 tháng 12 2016

a) f(-1) = (-1)2 + 5(-1) = -4 =y

tuong tu

b) x2 + 5x = -6

x2 +5x +6 = 0 => x2 +3x +2x +6 = 0

(x+3)(x+2) = 0

x = -3; x = -2

( chiều yên tâm đi học r)