Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> A = \(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
Nhân 2 vế vào A , ta được :
=> 2A = \(1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}\) ( 1 )
Trừ ( 1 ) cho A , ta được :
2A - A = \(1+\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^1}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-\frac{1}{2^5}\)
=> A = \(1-\frac{1}{2^5}=1-\frac{1}{32}=\frac{31}{32}\)
Kiểm tra : 2003 : 2004 \(\approx\) 0,999
31 : 32 \(\approx\)0,968
Vì 0,999 > 0,968 => \(\frac{2003}{2004}>\frac{31}{32}\)
A=1/2+1/4+1/8+1/16+1/32
A=16/32+8/32+4/32+2/34+1/34
A=31/34
B>A
a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)
Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)
\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)
b)
Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)
Còn: \(\frac{2004.2005-1}{2004.2005}=1\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)
P/s: Mình không chắc câu b) Nhé
Ta thấy : n > n - 3
=> \(\frac{n}{n-1}>1\)
Có : n + 1 < n + 2
=> \(\frac{n+1}{n+2}< 1\)
=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)
\(A=\frac{2003^{2003}+1}{2003^{2004}+1}< \frac{2003^{2003}+1+2002}{2003^{2004}+1+2002}\)
\(=\frac{2003^{2003}+2003}{2003^{2004}+2003}=\frac{2003\left(2003^{2002}+1\right)}{2003\left(2003^{2003}+1\right)}=\frac{2003^{2002}+1}{2003^{2003}+1}=B\)
\(\Rightarrow A< B\)
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)
Lại có :
\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
\(a.\)
\(A=\)\(\frac{10^{15}+1}{10^{16}+1}\)
\(10A=\) \(\frac{10\left(10^{15}+1\right)}{10^{16}+1}\)
\(10A=\) \(\frac{10^{16}+10}{10^{16}+1}\)
\(10A=\)\(\frac{10^{16}+1+9}{10^{16}+1}\)
\(10A=\frac{10^{16}+1}{10^{16}+1}+\frac{9}{10^{16}+1}\)
\(10A=1+\frac{9}{10^{16}+1}\)
\(B=\frac{10^{16}+1}{10^{17}+1}\)
\(10B=\frac{10\left(10^{16}+1\right)}{10^{17}+1}\)
\(10B=\frac{10^{17}+10}{10^{17}+1}\)
\(10B=\frac{10^{17}+1+9}{10^{17}+1}\)
\(10B=\frac{10^{17}+1}{10^{17}+1}+\frac{9}{10^{17}+1}\)
\(10B=1+\frac{9}{10^{17}+1}\)
\(\Rightarrow10B< 10A\Rightarrow B< A\)\(\text{( vì tự làm ) }\)
xin lỗi hôm qua mk đang làm thì phải đy học zoom học xong quên h mới nhơ ra làm típ :)
b
\(A=\frac{3}{8^3}+\frac{7}{8^4}=\frac{3}{8^3}+\frac{3}{8^4}+\frac{4}{8^4}\)
\(B=\frac{3}{8^4}+\frac{7}{8^3}=\frac{3}{8^4}+\frac{3}{8^3}+\frac{4}{8^3}\)
Vì \(\frac{4}{8^4}< \frac{4}{8^3}\)=.> A < B
Y = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}=1-\frac{1}{32}=\frac{31}{32}\)
=> Y = \(\frac{31}{32}=1-\frac{1}{32}\) < \(1-\frac{1}{2004}=\frac{2003}{2004}\) = B