Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot15\cdot37\right)\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left(65\cdot111-13\cdot5\cdot3\cdot37\right)\\=\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-\left(13\cdot5\right)\cdot\left(3\cdot37\right)\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot\left[65\cdot111-65\cdot111\right]\\ =\left(1+2+3+...+100\right)\cdot\left(1^2+2^2+3^2+...+10^2\right)\cdot0\\ =0\)
a) (105 + 155 - 55) : 55
= 105 : 55 + 155 : 55 - 55 : 55
= 25 + 35 - 1
= 32 + 243 - 1
= 274
\(S=1+2+2^2+...+2^{100}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{101}\)
\(\Rightarrow S=2^{101}-1\)
\(\Rightarrow S=2^{101}-1< 2^{122}\)
S = 1 + 2 + 2^2 +......+ 2^100
2S = 2 x (1 + 2 + 2^2 +.......+ 2^100)
2S = 2 + 2^2 + 2^3 +....+ 2^100 + 2^101
2S - S = (2 + 2^2 + 2^3 +.....+2^100 + 2^101)-(1+2+2^2+.....+2^100)
S = 2^101 - 1
=> 2^101-1 < 2^122
\(a,-2\left(x+7\right)+3\left(x-2\right)=-2\)
\(-2x-14+3x-6=-2\)
\(-2x+3x=-2+14+6\)
\(x=18\)
\(b,\left(x+3\right)^3:3-1=-10\)
\(\left(x+3\right)^3:3=-9\)
\(\left(x+3\right)^3=-27\)
\(\left(x+3\right)^3=\left(-9\right)^3\)
\(\Rightarrow x+3=9\)
\(\Rightarrow x=6\)
\(c,\left(x+1\right)^2\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x^2=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=1or-1\end{cases}}}\)
ko bt câu c này kl thế nào lun
Tính giá trị biểu thức :
( 1 + 2 + 3 + .... + 100 ) . ( 12 + 22 + 32 + ..... + 102 ) . ( 65 . 111 -13 . 15 . 37 )
= ( 1 + 2 + 3 + .... + 100 ) . ( 12 + 22 + 32 + ..... + 102 ) . (7215 - 7215)
= ( 1 + 2 + 3 + .... + 100 ) . ( 12 + 22 + 32 + ..... + 102 ) . 0
= 0
Vậy kết quả của giá trị biểu thức trên là 0
Gọi tổng đề bài cho là A
\(1+2+3+...+100=\frac{\left(100+1\right).100}{2}=5050\)
\(B=1^2+2^2+3^2+...+10^2\)
\(=1.2-1+2.3-2+3.4-3+...+10.11-10\)
\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)\)(1)
Đặt \(C=1.2+2.3+3.4+...+10.11\)
\(3C=1.2.3+2.3.3+3.4.3+...+10.11.3\)
\(3C=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)\)
\(3C=10.11.12\)
\(C=4.10.11=440\)(2)
Từ (1) và (2), ta được:
\(B=440-\frac{10.11}{2}=385\)
\(65.100-13.15.37=65.100-13.5.37=65.100-65.111=65\left(100-111\right)=65.\left(-11\right)=-715\)
Vậy \(A=5050.385-715=1943535\)
\(A=\frac{2^{10}.13+2^{10}.65}{2^8.104}=\frac{2^{10}.13+2^{10}.13.5}{2^8.2^2.13.2}\)
\(=\frac{2^{10}.13\left(1+5\right)}{2^{10}.13.2}=\frac{2^{10}.13.6}{2^{10}.13.2}=\frac{6}{2}=3\)
\(B=\left(1+2+3+...+100\right)\left(1^2+2^2+3^2+...+100^2\right)\left(65.111-13.15.37\right)\)
\(=\left(1+2+3+...+100\right)\left(1^2+2^2+...+100^2\right)\left(65.111-13.5.3.37\right)\)
\(=\left(1+2+...+100\right)\left(1^2+2^2+...+100^2\right)\left(65.111-65.111\right)\)
\(=\left(1+2+...+100\right)\left(1^2+2^2+...+100^2\right).0\)
\(=0\)
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(x+1+x+2+x+3+...+x+100=5750\)
\(x+x+x+...+x+1+2+3+...+100=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(x=700:100\)
\(x=7\)
t_i_c_k cho mình nha ^^
ban kia lam dung roi do
k tui nha
thanks