Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=2+22+23+245+26+27+28+29+210
P=2(1+2)+23(1+2)+25(1+2)+27(1+2)+29(1+2)
P=2.3+23.3+25.3+27.3+29.3=3.(2+23+25+27+29) Chia hết cho 3
=>P chia hết cho 3
Bài 1 :
a, ab + ba = (a*10 + b) + (b*10 + a)
= a*(10+1) + b*(1+10)
= a*11 + b*11 chia hết cho 11
b, abc - cba = (a*100 + b*10 + c) - (c*100 + b*10 + a)
= a*99 + 0b + c*(-99) chia hết cho 99
Mk chỉ hướng dẫn thui nhé ! ( Thông cảm cho mk )
Bạn gộm các số lại với nhau sao cho xuất hiện số có thể chia hết cho số cần chứng minh .
Vd : 2 + 22 + 23 + 24 + ... + 298 + 299 chia hết cho 6
= ( 2 + 22 ) + ( 23 + 24 ) + ... + (298 + 299 )
= 6 + ( 23 + 24 ) + ... + (298 + 299 )
Sau đó bạn làm các số sau cũng xuất hiện số đó
= 6 + 22 . ( 2 + 22 ) + ... + 297 . ( 2 + 22 )
= 6.1 + 22.6 + ... + 297.6
Rồi bạn đưa số chung ra đầu và nó sẽ như thế này :
= 6 . ( 1 + 22 + ... + 297 ) chia hết cho 6
Các ý bạn đưa ra có thể làm theo ý mk VD
~ CHÚC BẠN THI HK TỐT NHÉ ! ~
a, S=1+2^7+(2+2^2)+(2^3+2^4)+(2^5+2^6)
S=1+128+2*3+(2^3*1+2^3*2)+(2^5*1+2^5*2)
S=129+2*3+2^3*(1+2)+2^5*(1+2)
S=3*43+2*3+2^3*3+2^5*3
S=3*(43+2+2^3+2^5)chia hết cho 3 nên S chia hết cho 3
c) S = ( -2 ) + 4+ ( -6 ) + 8 + ... + ( -2002 ) + 2004
S = [ (-2)+4] + [ (-6) + 8 ] + ... + [ (-2002) + 2004 ]
S = 2 + 2 + 2 + ... + 2 ( 501 số hạng 2 )
S = 2*501
S = 1002
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)