K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

A B C D E M F N

A)

TA CÓ \(\hept{\begin{cases}MN\perp EC\\AB\perp EC\end{cases}\Leftrightarrow MN//AB//DC}\)

Xét Hình thanh ABCD 

Có \(MA=MD\left(gt\right);MN//DC\left(cmt\right)\)

=> MN là đường trung bình của hình thanh ABCD

\(\Rightarrow BN=CN\)

Ta có 

\(MD=MA=\frac{AD}{2}\left(gt\right)\)

\(BN=CN=\frac{BC}{2}\left(gt\right)\)

Mà AD = BC(GT)

\(\Rightarrow MD=MA=BN=CN\)

Có \(AD//BC\Rightarrow MD//CN\)

Xét tứ giác MNCD 

Có MD//CN(cmt): MD=CN(cmt)

=> Tứ giác MNCD là hình bình hành 

b) Xét Hình thang DAEC

có \(MD=MA\left(gt\right);MF//DC\left(gt\right)\)

=>MF là đường trung bình

=> EF = FC

Xét tam giác EMC có MF là đường cao vừa là đường trung tuyến ( EF = FC)

=> \(\Delta EMC\) cân tại M

18 tháng 11 2019

ko bit

Ta có : MN\(\perp\)EC

AB\(\perp\)EC 

=> AB // MN 

Vì ABCD là hình bình hành 

=> AD = BC 

=> AB // CD

=> AB // CD // MN 

Xét tứ giác AECD có :

M là trung điểm AD 

MF // AE 

=> F là trung điểm EC 

Xét \(\Delta CEB\)có :

F là trung điểm EC

FN// EB 

=> N là trung điểm BC 

Ta có : AM = MD = \(\frac{AD}{2}\)

BN = NC = \(\frac{BC}{2}\)

=> MD = NC 

Xét tứ giác MNCD có :

MN // DC 

MD = NC 

=>MNCD là hình bình hành 

Vì F là trung điểm EC

=> EF = FC

Xét \(\Delta MEC\)có :

MF \(\perp\)EC

EF = FC

=> \(\Delta MEC\)cân tại M 

7 tháng 11 2016

a, Ta có : CE vuông góc với AB

Mà CE đi qua MN và vuông góc với MN

=> AB//MN

Mà : AB//DC

=>MN//DC

Xét tứ giác MNCD có :

MN//DC (cmt)

MD//NC

=> MNCD là hình bình hành (có các cạnh đối bằng nhau)

b,Xét tam giác EBC có :

BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)

7 tháng 11 2016

Xin lỗi cho mình làm tiếp theo nha bạn .

Và : FN//EB   (MN//AB)

=> FN là đtb của tam giác EBC

=> EF=FC

* Ta lại xét tam giác MEF và tam giác MFC có :

MF cạnh chung

F=90

EF=FC (cmt)

=> tg MEF=tg MFC (cgc)

=> ME=MC

=> tam giác MEC là tam giác cân

c, mk không biết

nhớ k nhé

30 tháng 10 2021

A B D C F N M E

30 tháng 10 2021

a) Ta có : 
MN⊥CE (gt)
AB⊥CE (gt)
⇒ MN//AB
Mà AB//CD ( vì ABCD là hbh )
⇒ MN//CD
Xét tg MNCD có :
MN//CD (cmt )
MD//NC ( vì AD//BC )
⇒ tg MNCD là hbh
b) Gọi F là giao đ' của MN và EC 
Xét hình thang AECD (vì AE//CD ) có :
MF//AE//CD
Mà M là trung đ' AD (gt):
⇒ F là trung đ' EC 
⇒ EF=CF
Xét Δ EMC có :
MF là đg trung tuyến ( EF=CF ) đồng thời là đg cao ( vì MF⊥EC ) của ΔEMC
⇒ ΔEMC là Δ cân tại M 
đừng quên tick cho t nhoa ❤

10 tháng 11 2017
 
 

 ta có: MN//AB//CD ( MN và AB cùng vuông góc với CE) 
và MD//NC (AD//BC) 
=> MNCD là hình bình hành (1) 
MD=AD/2 
MN=AB=AD/2 
nên MD=MN (2) 
từ (1)(2) => MNCD là hình thoi. 
B) do MN//AB//CD(câu a) 
và M là trung điểm AD 
=> F là trung điểm EC => MF là đường trung tuyến của tam giác MEC 
với lại MF là đường cao của tam giác MEC(MF vuông góc với EC) 
=> tam giác MEC cân tại M 
C) tam giác MEC cân tại M và MF là đường cao của tam giác MEC 
=> MF là đường phân giác của tam giác MEC 
=> góc EMF=góc FMC 
góc AEM=góc EMF(AB//MN) 
góc FMC=góc CMD(MNCD là hình thoi nên đường chéo MC là phân giác) 
từ 3 điều trên suy ra góc AEM=EMF=FMC=CMD 
=> 2AEM=FMC+CMD