\(y=\dfrac{1}{10}x^2\)

a) vẽ đồ thị (P) cùa hàm số

b) c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Bài 1 :

a) Cái này cậu tự vẽ được nhé, cũng dễ mà :v tại tớ không biết vẽ trên đây :vvv

b)

*Xét A\(\left(3;\dfrac{9}{10}\right)\)

Thay x = 3 , y = \(\dfrac{9}{10}\) vào đồ thị hàm số , ta có

y = \(\dfrac{1}{10}x^2\)

\(\Rightarrow\dfrac{9}{10}=\dfrac{1}{10}\cdot3^2=\dfrac{9}{10}\)( Đúng )

Vậy điểm A thuộc đồ thị hàm số

*Xét B\(\left(-5;\dfrac{5}{2}\right)\)

Thay x = -5 , y = \(\dfrac{5}{2}\)vào đồ thị hàm số, ta có

\(y=\dfrac{1}{10}x^2\)

\(\Rightarrow\dfrac{5}{2}=\dfrac{1}{10}\cdot\left(-5\right)^2=\dfrac{25}{10}=\dfrac{5}{2}\) (Đúng)

Vậy điểm B thuộc đồ thị hàm số

* Xét \(C\left(-10;1\right)\)

Thay x=-10 ; y = 1 vào đồ thị hàm số, ta có

\(y=\dfrac{1}{10}x^2\)

\(\Leftrightarrow1=\dfrac{1}{10}\cdot\left(-10\right)^2=\dfrac{1}{10}\cdot100=10\) ( Vô lí )

Vậy điểm C không thuộc đồ thị hàm số

Bài 2:

* Xét A \(\left(\sqrt{2};m\right)\)

Thay x = \(\sqrt{2}\) vào đồ thị hàm số, có

y = \(\dfrac{1}{4}x^2=\dfrac{1}{4}\cdot\left(\sqrt{2}\right)^2=\dfrac{1}{4}\cdot2=\dfrac{1}{2}\)

Vậy \(A\left(\sqrt{2};\dfrac{1}{2}\right)\)

* Xét B( \(-\sqrt{2};m\))

Thay x = \(-\sqrt{2}\) vào ĐTHS, có

y= \(\dfrac{1}{4}\cdot\left(-\sqrt{2}\right)^2=\dfrac{1}{4}\cdot2=\dfrac{1}{2}\)

Vậy B\(\left(-\sqrt{2};\dfrac{1}{2}\right)\)

* Xét \(C\left(m;\dfrac{3}{4}\right)\)

Thay y= \(\dfrac{3}{4}\) vào ĐTHS, ta có

\(\dfrac{3}{4}=\dfrac{1}{4}\cdot x^2\)

=> \(x^2=\dfrac{3}{4}:\dfrac{1}{4}=3\)

\(\Rightarrow x=\pm\sqrt{3}\)

Vậy C \(\left(\sqrt{3};\dfrac{3}{4}\right)\) hoặc C\(\left(-\sqrt{3};\dfrac{3}{4}\right)\)

Bài 1: 

a: \(\Leftrightarrow\left|x+\dfrac{4}{15}\right|=-2.15+3.75=\dfrac{8}{5}\)

=>x+4/15=8/5 hoặc x+4/15=-8/5

=>x=4/3 hoặc x=-28/15

b: \(\Leftrightarrow\left[{}\begin{matrix}\dfrac{5}{3}x=-\dfrac{1}{6}\\\dfrac{5}{3}x=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{6}:\dfrac{5}{3}=\dfrac{-3}{30}=\dfrac{-1}{10}\\x=\dfrac{1}{10}\end{matrix}\right.\)

c: \(\Leftrightarrow\left|x-1\right|-1=1\)

=>|x-1|=2

=>x-1=2 hoặc x-1=-2

=>x=3 hoặc x=-1

Bài 2: 

b: \(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{9}{25}\)

Bài 3: 

a: \(A=\left|x+\dfrac{15}{19}\right|-1>=-1\)

Dấu '=' xảy ra khi x=-15/19

b: \(\left|x-\dfrac{4}{7}\right|+\dfrac{1}{2}>=\dfrac{1}{2}\)

Dấu '=' xảy ra khi x=4/7

 

11 tháng 10 2017

1/ Ta có: \(x^2-2x-1=\left(\sqrt{2}+1\right)^2-2\left(\sqrt{2}+1\right)-1=0\)

\(\Rightarrow P=\left(x^4-4x^3+4x^2-2\right)^5+\left(x^3-3x^2-x-1\right)^6\)

\(=\left[\left(x^4-2x^3-x^2\right)+\left(-2x^3+4x^2+2x\right)+\left(x^2-2x-1\right)-1\right]^5+\left[\left(x^3-2x^2-x\right)+\left(-x^2+2x+1\right)-2x-2\right]^6\)

\(=\left(-1\right)^5+\left(-2x-2\right)^6\)

Xong

11 tháng 10 2017

5) Lợi dụng AM-GM :v

\(a^4+a^4+a^4+b^4\ge4a^3b\)

\(b^4+b^4+b^4+a^4\ge4b^3a\)

\(\Rightarrow2a^4+2b^4\ge a^4+a^4+ab^3+a^3b=\left(a^3+b^3\right)\left(a+b\right)\)

\(\Rightarrow P\ge\dfrac{a+b}{2ab}+\dfrac{b+c}{2bc}+\dfrac{c+a}{2ac}=\dfrac{\left(a+b\right)c}{2abc}+\dfrac{\left(b+c\right)a}{2abc}+\dfrac{\left(c+a\right)b}{2abc}=\dfrac{2\left(ab+bc+ca\right)}{2abc}=1\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=3\)

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

Bài 1: 

a: \(=\dfrac{1}{mn^2}\cdot\dfrac{n^2\cdot\left(-m\right)}{\sqrt{5}}=\dfrac{-\sqrt{5}}{5}\)

b: \(=\dfrac{m^2}{\left|2m-3\right|}=\dfrac{m^2}{3-2m}\)

c: \(=\left(\sqrt{a}+1\right):\dfrac{\left(a-1\right)^2}{\left(1-\sqrt{a}\right)}=\dfrac{-\left(a-1\right)}{\left(a-1\right)^2}=\dfrac{-1}{a-1}\)

16 tháng 6 2017

a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)

b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(\sqrt{x}=a,\sqrt{y}=b\)

Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)

\(\Rightarrow B=x+\sqrt{xy}+y\)

Vậy...

c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)

d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)

16 tháng 6 2017

a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)

= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)

=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)

= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)

b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)

=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )

= (x+\(\sqrt{xy}\)+y)

c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)

Tương tự câu a

d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)

tương tự câu a

e:2x +√1−6x+9x23x−1

= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)

= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)

=2x+\(\dfrac{3x-1}{3x-1}\)

=2x+1

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC . Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK ! ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN...
Đọc tiếp

KẾT QUẢ CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC .

Giải nhất : Ngô Tấn Đạt . Phần thưởng : Thẻ cào 100k + 30GP

Giải nhì : Hoàng Thảo Linh và Diệp Băng Dao . Phần thưởng : Thẻ cào 50k + 20GP

Giải ba : Truy kích và Luân Đào . Phần thưởng : 15GP

Nhờ thầy @phynit trao giải cho những bạn trên ạ . Cảm ơn các bạn dã ủng hộ cuộc thi của mình . GOOD LUCK !

ĐÁP ÁN VÒNG 3 : " CUỘC THI TOÁN DO DƯƠNG PHAN KHÁNH DƯƠNG TỔ CHỨC "

Câu 1 :

a ) ĐKXĐ : \(x\ge0\) , \(x\ne25\) , \(x\ne9\)

b )

\(A=\left(\dfrac{x-5\sqrt{x}}{x-25}-1\right):\left(\dfrac{25-x}{x+2\sqrt{x}-15}-\dfrac{\sqrt{x}+3}{\sqrt{x}+5}+\dfrac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}-1\right):\left(\dfrac{25-x}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}+\dfrac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+5}-1\right):\left(\dfrac{25-x-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\left(\dfrac{25-x-x+9+x-25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\right)\)

\(=\dfrac{-5}{\sqrt{x}+5}:\dfrac{-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+5\right)}\)

\(=\dfrac{-5}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}+3\right)}{\sqrt{x}+5}\)

\(=\dfrac{-5}{\sqrt{x}+5}\times\dfrac{\sqrt{x}+5}{-\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5}{\sqrt{x}+3}\)

c )

Để biểu thức A nhận giá trị nguyên thì \(5\) phải chia hết cho \(\sqrt{x}+3\)

Ta có : \(Ư\left(5\right)=\left(-5;-1;1;5\right)\) . Mà \(\sqrt{x}+3\ge3\) .

\(\Rightarrow\sqrt{x}+3=5\Rightarrow\sqrt{x}=2\Rightarrow x=4\left(N\right)\)

Vậy \(x=4\) thì biểu thức A nhận giá trị nguyên .

d )

Ta có :

\(B=\dfrac{A\left(x+16\right)}{5}=\dfrac{5\left(x+16\right)}{\dfrac{\sqrt{x}+3}{5}}=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\)

Theo BĐT Cô - Si cho hai số không âm ta có :

\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\sqrt{x}+3\times\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)

\(\Rightarrow\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge10-6=4\)

Dấu \("="\) xảy ra khi \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

Vậy GTNN của \(B\) là 4 khi \(x=4\)

Câu 2 :

a ) \(\left(x^2-x+1\right)\left(x^2+4x+1\right)=6x^2\)

\(\Leftrightarrow x^4+4x^3+x^2-x^3-4x^2-x+x^2+4x+1-6x^2=0\)

\(\Leftrightarrow x^4+3x^3-8x^2+3x+1=0\)

Xét : 0 không phải là nghiệm của phương trình trên .

\(\Leftrightarrow x^2+3x-8+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+\left(3x+\dfrac{3}{x}\right)-8=0\)

\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-10=0\)

Đặt \(x+\dfrac{1}{x}=t\) . Phương trình trở thành :

\(t^2+3t-10=0\)

\(\Delta=9+40=49>0\)

\(\Rightarrow\left\{{}\begin{matrix}t_1=\dfrac{-3+\sqrt{49}}{2}=2\\t_2=\dfrac{-3-\sqrt{49}}{2}=-5\end{matrix}\right.\)

Với \(t_1=2\) :

\(\Leftrightarrow x+\dfrac{1}{x}=2\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{2x}{x}\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Với \(t=-5\) :

\(\Leftrightarrow x+\dfrac{1}{x}=-5\)

\(\Leftrightarrow\) \(\dfrac{x^2}{x}+\dfrac{1}{x}=\dfrac{-5x}{x}\)

\(\Leftrightarrow x^2+5x+1=0\)

\(\Delta=25-4=21>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{21}}{2}\\x_2=\dfrac{-5-\sqrt{21}}{2}\end{matrix}\right.\)

Vậy \(S=\left\{1;\dfrac{-5+\sqrt{21}}{2};\dfrac{-5-\sqrt{21}}{2}\right\}\)

b ) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\left(x^2+x\right)-3\sqrt{x^2+x}+\sqrt{x^2+x}-1=0\)

\(\Leftrightarrow3\sqrt{x^2+x}\left(\sqrt{x^2+x}-1\right)+\left(\sqrt{x^2+x}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)\left(3\sqrt{x^2+x}+1=0\right)\)

\(\) \(\Leftrightarrow\left(\sqrt{x^2+x}-1\right)=0\) . Vì \(3\sqrt{x^2+x}+1>0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Delta=1+4=5>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-1+\sqrt{5}}{2}\\x_2=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy ..............................

c )

\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\) ( ĐK : \(x\ge-1\) )

\(\Leftrightarrow\sqrt{x+3}+2x\sqrt{x+1}-2x-\sqrt{\left(x+1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2x\right)\left(\sqrt{x+1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=2x\\\sqrt{x}+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x+3=4x^2\end{matrix}\right.\\x+1=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy......................

d ) \(x^2+9x+20=2\sqrt{3x+10}\) ( ĐK : \(x\ge-\dfrac{10}{3}\) )

\(\Leftrightarrow\left(x^2+6x+9\right)+\left(3x+10-2\sqrt{3x+10}+1\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\sqrt{3x+10}-1\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\\sqrt{3x+10}=1\end{matrix}\right.\Leftrightarrow x=-3\)

Vậy...............................

Câu 3 :

a )

\(VT=\dfrac{\sqrt{\dfrac{abc+4}{a}-4\sqrt{\dfrac{bc}{a}}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4}{a}-\dfrac{4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{abc+4-4\sqrt{abc}}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\sqrt{\dfrac{\left(\sqrt{abc}-2\right)^2}{a}}}{\sqrt{abc}-2}\)

\(=\dfrac{\dfrac{\sqrt{abc}-2}{\sqrt{a}}}{\sqrt{abc}-2}=\dfrac{1}{\sqrt{a}}\left(đpcm\right)\)

b )

Nếu trong \(a+bc;b+ca;c+ab\) không có số nào lớn hơn 1 thì giá trị của mỗi số hạng củaVT ít nhất là \(\dfrac{1}{3}\)

Nếu trong \(a+bc;b+ca;c+ab\) có một số lớn hơn 1 khi đó : \(c=\dfrac{1-ab}{a+b}\)\(a+b< 1\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}\ge\dfrac{4}{2a+2b+2bc+2ca+2}=\dfrac{2}{a+b+2-ab}\)

Khi đó ta cần chứng minh :

\(\dfrac{2}{2+a+b-ab}+\dfrac{1}{2c+2ab+1}\ge1\)

Hay :\(\dfrac{2}{a+b-ab+2}+\dfrac{a+b}{a+b-2ab+2ab\left(a+b\right)+2}\ge1\)

Ta có :

\(VT=\dfrac{4+4\left(a+b\right)-4ab+3ab\left(a+b\right)+\left(a+b\right)^2}{\left(2+a+b-ab\right)\left(2+a+b-2ab+2ab\left(a+b\right)\right)}\)

Đặt \(S=a+b< 1;P=ab\) . Ta cần chứng minh :

\(\dfrac{4+4S-4P+3SP+S^2}{4S-6P+3SP+S^2+2S^2P-2P^2+2SP^2+4}\ge1\)

\(\Leftrightarrow2P\ge2S^2P-2P^2+2S^2P\)

\(\Leftrightarrow2P\left(1-S\right)\left(P+S+1\right)\ge0\) ( Đúng vì \(S< 1\) )

Dấu \("="\) xảy ra khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và hoàn vị .

Câu 4 :

A B C H D E

a )

Tứ giác ADHE có : \(\widehat{A}=\widehat{D}=\widehat{E}=90^0\)

\(\Rightarrow ADHE\) là hình chữ nhật .

\(\Rightarrow\widehat{AED}=\widehat{HAE}\)

Ta lại có : \(\widehat{HAE}=\widehat{ABC}\) ( Cùng phụ với góc C )

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Xét \(\Delta AED\)\(\Delta ABC\) ta có :

\(\left\{{}\begin{matrix}\widehat{A}:Chung\\\widehat{AED}=\widehat{ABC}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AED\sim\Delta ABC\left(g-g\right)\)

b )

Ta có : \(\left\{{}\begin{matrix}S_{ADE}=\dfrac{1}{2}S_{ADHE}\\S_{ABC}=2S_{ADHE}\end{matrix}\right.\Rightarrow S_{ADE}=\dfrac{1}{4}S_{ABC}\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\dfrac{1}{4}\)

Mặt khác : \(\Delta ADE\sim\Delta ABC\) ( Câu a )

\(\Rightarrow\) \(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{DE}{BC}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\) \(\dfrac{DE}{BC}=\dfrac{1}{2}\Rightarrow DE=\dfrac{1}{2}BC\)

Gọi M là trung điểm của BC .

\(\Delta ABC\) vuông tại A . \(\Rightarrow AM=\dfrac{1}{2}BC\)

\(\Rightarrow DE=AM\)

\(AH=DE\) ( Do ADHE là hình chữ nhật )

\(\Rightarrow AM=AH\) ( Đường trung tuyến cũng là đường cao )

\(\Rightarrow\Delta ABC\) vuông cân tại A ( đpcm )

Câu 5 :

Ta có :

\(\left\{{}\begin{matrix}2011+y^2=y^2+xy+yz+zx=\left(x+y\right)\left(y+z\right)\\2011+z^2=z^2+xy+yz+zx=\left(x+z\right)\left(y+z\right)\\2011+x^2=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

\(\Rightarrow Q=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=2\left(xy+yz+zx\right)=2.2011=4022\)

13
25 tháng 6 2018

bucminh

25 tháng 6 2018

Mi kết liễu đời ta đii :v

8 tháng 7 2018

\(a.\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{3}.\sqrt{3}}{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}=\sqrt{6}-\dfrac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{3\sqrt{2}-3\sqrt{3}}{\sqrt{3}-\sqrt{2}}=\dfrac{-3\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=-3\) \(b.\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)=\left(2\sqrt{2}-\sqrt{3}\right)\left(2\sqrt{2}+\sqrt{3}\right)=8-3=5\) \(c.\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{9-5}:\sqrt{5}=\dfrac{2\sqrt{5}}{4}.\dfrac{1}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}.\dfrac{1}{\sqrt{5}}=\dfrac{1}{2}\) \(d.\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)=\left(3-\sqrt{a}\right)\left(3+\sqrt{a}\right)=9-a\)

8 tháng 7 2018

cảm ơn bạn nhiều nhiều nha !!!

Câu 1: 

a: \(P=\dfrac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

b: Để \(2P=2\sqrt{5}+5\) thì \(P=\dfrac{2\sqrt{5}+5}{2}\) 

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+5\right)=2\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{5}+3\right)=2\)

hay \(x=\dfrac{4}{29+12\sqrt{5}}=\dfrac{4\left(29-12\sqrt{5}\right)}{121}\)