K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

27 tháng 6 2017

a) Vì tia Ot là tia phân giác của \(\widehat{xOy}\)

=> \(\widehat{xOt}=\widehat{yOt}=\dfrac{\widehat{xOy}}{2}=\dfrac{70^o}{2}=35^o\)

Vậy \(\widehat{yOt}=35^o\)

b) Trên cùng 1 nửa mặt phẳng bờ chứa tia Ox có :

\(\widehat{xOy}=70^o< \widehat{xOz}=90^o\)

=> Tia Oy nằm giữa tia Ox và tia Oz

=> \(\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\left(1\right)\)

Thay \(\widehat{xOy}=70^o\)\(\widehat{xOz}=90^o\) vào (1) , ta được :

\(70^o+\widehat{yOz}=90^o\)

=> \(\widehat{yOz}=90^o-70^o=20^o\)

Vậy \(\widehat{yOz}=20^o\)

Cặp góc phụ nhau có trong hình là \(\widehat{xOy}\)\(\widehat{yOz}\)

7 tháng 3 2018

Đáp án C

Phương pháp: Sử dụng phương pháp xác định tâm mặt cầu ngoại tiếp khối chóp.

Cách giải: Đặt A(x;0;0), B(0;y;0), (x,y > 0)

Vì OA + OB = OC = 1 => x + y = 1

Gọi J, F lần lượt là trung điểm AB, OC. Kẻ đường thẳng qua F song song OJ, đường thẳng qua J song song OC, 2 đường thẳng này cắt nhau tại G.

∆OAB vuông tại O => J là tâm đường tròn ngoại tiếp tam giác.

GJ // OC => GJ ⊥ (OAB) => GO = GA = GB

GF // JO, JOOC => GFOC, mà F là trung điểm của OC

=>GF là đường trung trực của OC => GC = GO

=> GO = GA = GB = GC => G là tâm mặt cầu ngoại tiếp tứ diện OABC

Bán kính mặt cầu ngoại tiếp tứ diện OABC :

Ta có:

31 tháng 3 2016

Trên nửa mặt phẳng có bờ chứa tia Ox, vẽ tia Oy, Oz sao cho ∠xOy = 50 độ; ∠xOy = 100 độ  Sai đề

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)

Bài 7:

a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOy}< \widehat{xOt}\)

nên tia Oy nằm giữa hai tia Ox và Ot

b: Ta có: tia Oy nằm giữa hai tia Ox và Ot

mà \(\widehat{xOy}=\dfrac{1}{2}\widehat{xOt}\)

nên Oy là tia phân giác của góc xOt

23 tháng 9 2019

HD:  Gọi tọa độ ba điểm A, B, C lần lượt là 

Vậy độ dài ba cạnh OA, OB, OC lần lượt theo thứ tự lập thành cấp số cộng. Chọn C.

23 tháng 2 2017

Đáp án A

Dễ dàng suy ra:

A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c , a , b , c > 0

vì d M ; O B C = d M ; O y z = x M = 1 , tương tự ta có được  M 1 ; 2 ; 3

M ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 1.2.3 a . b . c 3 ⇔ a b c 6 = V O . A B C ≥ 27

Dấu bằng xảy ra khi:

1 a = 2 b = 3 c = 1 3 ⇒ a = 3 ; b = 6 ; c = 9 ⇒ a + b + c = 18

8 tháng 5 2017