Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đơn thức nào đồng dạng thì đem cộng với nhau
a) \(x^5-3x^2+x^4-\dfrac{1}{2}x-x^5+5x^4+x^2-1\)
\(=6x^4-2x^2-\dfrac{1}{2}x-1\)
b) \(x-x^9+x^2-5x^3+x^6-x+3x^9+2x^6-x^3+7\)
\(=2x^9+3x^6-6x^3+x^2+7\)
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
Bài 1:
a)
\(F+G+H=(x^3-2x^2+3x+1)+(x^3+x-1)+(2x^2-1)\)
\(=2x^3+4x-1\)
b)
\(F-G+H=0\)
\(\Leftrightarrow (x^3-2x^2+3x+1)-(x^3+x-1)+(2x^2-1)=0\)
\(\Leftrightarrow 2x+1=0\)
\(\Leftrightarrow x=-\frac{1}{2}\)
Bài 2:
a)
\(A=-4x^5-x^3+4x^2-5x+9+4x^5-6x^2-2\)
\(=(-4x^5+4x^5)-x^3+(4x^2-6x^2)-5x+(9-2)\)
\(=-x^3-2x^2-5x+7\)
\(B=-3x^4-2x^3+10x^2-8x+5x^3\)
\(=-3x^4+(5x^3-2x^3)+10x^2-8x\)
\(=-3x^4+3x^3+10x^2-8x\)
b)
\(P=A+B=(-x^3-2x^2-5x+7)+(-3x^4+3x^3+10x^2-8x)\)
\(=-3x^4+(3x^3-x^3)+(10x^2-2x^2)-(8x+5x)+7\)
\(=-3x^4+2x^3+8x^2-13x+7\)
\(P(-1)=-3.(-1)^4+2(-1)^3+8(-1)^2-12(-1)+7=23\)
\(Q=A-B=(-x^3-2x^2-5x+7)-(-3x^4+3x^3+10x^2-8x)\)
\(=3x^4-(x^3+3x^3)-(2x^2+10x^2)+(8x-5x)+7\)
\(=3x^4-4x^3-12x^2+3x+7\)
b) \(3^{x+1}=9^x=3^{2x}\)
\(\Rightarrow x+1=2x\Leftrightarrow x=1\)
c) \(2^{3x+2}=4^x+5\Leftrightarrow4^{2x+1}=4^{x+5}\)
\(\Rightarrow2x+1=x+5\)\(\Rightarrow x=4\)
d) \(3^{2x-1}=243=3^5\)
\(\Rightarrow2x-1=5\Rightarrow x=3\)
a) (3x - 1)6 = (3x - 1)4
=> (3x - 1)6 - (3x - 1)4 = 0
=> (3x - 1)4 [(3x - 1)2 - 1] = 0
=> (3x - 1)4 = 0 hoặc (3x - 1)2 - 1 = 0
=> 3x - 1 = 0 hoặc (3x - 1)2 = 1
+) 3x - 1 = 0 => x = 1/3
+) 3x - 1 = 1 hoặc 3x - 1 = -1
=> 3x = 2 hoặc 3x = 0
=> x = 2/3 hoặc x = 0
Vậy x = 1/3,x = 2/3,x = 0
b) 5 - |3x - 1| = 3
=> |3x - 1| = 2
=> 3x - 1 = 2 hoặc 3x - 1 = -2
=> x = 1 hoặc x = -1/3
c) 9(x - 1)2 - 4/9 : 2/9 = 1/4
=> 9(x - 1)2 - 4/9 . 9/2 = 1/4
=> 9(x - 1)2 - 2 = 1/4
=> 9(x - 1)2 = 9/4
=> (x - 1)2 = 1/4
=> x - 1 = 1/2 hoặc x - 1 = -1/2
=> x = 3/2 hoặc x = 1/2
a) \(\left(3x-1\right)^6=\left(3x-1\right)^4\)
=>\(\hept{\begin{cases}3x-1=0\\3x-1=1\\3x-1=-1\end{cases}}=>\hept{\begin{cases}3x=1\\3x=2\\3x=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{3}\\x=\frac{2}{3}\\x=0\end{cases}}}\)
Vậy x = \(\frac{1}{3}\);x=\(\frac{2}{3}\);x=0
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
\(\left(5-xy\right)^2=25-10xy+x^2y^2\)
\(\left(3-2y\right)^2=9-12y+4y^2\)
\(\left(3+x^2\right)\left(3-x^2\right)=9-x^4\)
\(\left(5x-2y\right)\left(25x+10xy+4y^2\right)=\left(5x-2y\right)\left(5x+2y\right)=25x^2-4y^2\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)=\left(3x+y\right)\left(3x-y\right)=9x^2-y^2\)