Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=3\)
Vậy bt trên ko phụ vào biến x
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
\(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)
Vậy bt trên ko phụ vào biến x
[x² - 2mx - 4(m²+1)].[x² - 4x - 2m(m²+1)] = 0 (1)
pt (1) tương đương với tuyển hai pt:
[x² - 2mx - 4(m²+1) = 0 (*)
[x² - 4x - 2m(m²+1) = 0 (**)
- - -
∆' (*) = m² + 4(m²+1) = 5m² + 1 > 0 với mọi m => (*) luôn có hai nghiệm phân biệt
∆' (**) = 4 + 2m(m²+1) = 2(m+1)(m² - m + 2)
Thấy m² - m + 2 = (m - 1/2)² + 7/4 > 0 với mọi m
=> (**) có nghiệm khi và chỉ khi ∆'(**) ≥ 0 <=> m+1 ≥ 0 <=> m ≥ -1
- - -
Trước tiên ta xét trường hợp (*) và (**) có nghiệm chung khi đó ta có hệ:
{x² - 2mx - 4(m²+1) = 0 (1*)
{x² - 4x - 2m(m²+1) = 0 (2*)
trừ vế ta được: (2m-4)x - 2m(m²+1) + 4(m²+1) = 0
<=> (m-2)x - (m-2)(m²+1) = 0
nếu m = 2, khi đó cả hai pt (1*) và (2*) thành x² - 4x - 20 = 0
chứng tỏ (*) và (**) trùng nhau nên (1) chỉ có 2 nghiệm, không thỏa yêu cầu
Vậy m # 2, từ trên => x = m²+1 ; thay vào (1*) ta có: (m²+1)² - 2m(m²+1) - 4(m²+1) = 0
<=> m²+1 - 2m - 4 = 0 (do m²+1 > 0 ) <=> m² - 2m - 3 = 0 <=> m = -1 hoặc m = 3
- - - các bước chhuẩn bị đã xong, giờ thì bắn thôi - - -
(1) có 3 nghiệm phân biệt khi và chỉ khi (**) có nghiệm kép khác với hai nghiệm của (*), hoặc (**) có hai nghiệm pb trong đó có một nghiệm trùng với một nghiệm của (*)
* TH1: (**) có nghiệm kép khi và chỉ khi m = -1 , nhưng khi đó
(*) và (**) lại có nghiệm chung tức nghkép này đã bị trùng với nghiệm của (*)
=> (1) có 2 nghiệm - không thỏa
* TH2: (**) có hai nghiệm pbiệt, trong đó 1 nghiệm trùng với nghiệm của (*)
=> ta phải có: m > -1 và m = -1 hoặc m = 3 => m = 3
**Đảo lại khi m = 3: (*) có nghiệm là x = -4 ; x = 10; (**) có
nghiệm là: x = -6 ; x = 10
=> (1) có đúng 3 nghiệm là x = -6; x = -4 ; x = 10
Tóm lại: ta chọn được m = 3
Tk cho mk, mk tk lại
Bài 1 : Chứng minh phương trình vô nghiệm :
a, Ta có : \(x+2=x+5\)
=> \(x+2-x-5=0\)
=> \(-3=0\left(VL\right)\)
Vậy phương trình vô nghiệm .
b, Ta có : \(x^2-x+1=0\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\) ( Vô lý )
Vậy phương trình vô nghiệm .
a) \(a^3+b^3+3ab\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\)
\(=a^2-ab+b^2+3ab\)
\(=a^2+2ab+b^2=\left(a+b\right)^2\)
\(=1^2=1\)
b) \(x^3+y^3-3xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-3xy\)
\(=-\left(x^2+2xy+y^2\right)=-1^2=-1\)
c) A:Điều kiện xác định của P là \(x\ne-2\)
B: bạn tự làm nha......................
cảm ơn nhưng lúc sau bik làm hết rồi chỉ còn mỗi tìm điều kiện thôi!
\(ĐKXĐ:x\ne0,x\ne3\)
đkxđ: x ≠ 0 , x ≠ 3