Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Leftrightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{-10-6}{-8}=\dfrac{-16}{-8}=2\)\(\Rightarrow\left\{{}\begin{matrix}x=2.2+1=5\\y=2.3+2=8\\z=2.4+3=11\end{matrix}\right.\)
Theo đề bài ta có:
\(\left\{{}\begin{matrix}b^2=ac\\c^2=bd\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{b}{c}\\\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=k\)
ta có:
\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=k^3=\dfrac{a}{d}\)
Và \(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)
Ta có đpcm
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Bài 1:
a) ta có: \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=\frac{2y-4}{6}\)
ADTCDTSBN
có: \(\frac{x-1}{5}=\frac{2y-4}{6}=\frac{z-2}{2}=\frac{x-1+2y-4-z+2}{5+6-2}\)\(=\frac{\left(x+2y-z\right)-\left(1+4-2\right)}{9}=\frac{6-3}{9}=\frac{3}{9}=\frac{1}{3}\)
=>...
bn tự tính típ nhé!
b) ta có: \(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)
=>...
Bài 2:
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{b}\left(đpcm\right)\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\) (*)
mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Từ (*) \(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)