Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x5y-xy5=xy(x4-y4)=xy(x2-y2)(x2+y2)
=xy(x-y)(x+y)(x2+y2)
Ta cần cm bt trên chia hết cho 2,3 và 5
Nếu x,y cùng tính chẵn lẻ thì x-y chẵn=> x5y-xy5 chia hết cho 2 (1)
Nếu x,y không cùng tính chẵn lẻ thi x+y chẵn=>2 (2)
Từ (1) và (2)=> x5y-xy5 chia hết cho 2 với mọi x,y nguyên (13)
Nếu x hoặc y chia hết cho 3=>x5y-xy5 chia hết cho 3 (3)
Nếu x và y chia 3 có cùng số dư thì x-y chia hết cho 3=>x5y-xy5 chia hết cho 3 (4)
Nếu x,y chia 3 không cùng số dư thi x+y chia hết cho 3=>x5y-xy5 chia hết cho 3 (5)
Từ (3),(4) và (5)=>x5y-xy5 chia hết cho 3 với mọi x,y nguyên (14)
Nếu x hoặc y chia hết cho 5 thì x5y-xy5 chia hết cho 5 (6)
Nếu x chia 5 dư 1, y chia 5 dư 2 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (7)
Nếu x chia 5 dư 2, y chia 5 dư 3
và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (8)
Nếu x chia 5 dư 3, y chia 5 dư 4 và ngược lại thì
x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (9)
Nếu x chia 5 dư 1, y chia 5 dư 4 và ngược lại thì x+y chia hết cho 5
=>x5y-xy5 chia hết cho 5 (10)
Nếu x chia 5 dư 1, y chia 5 dư 3 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (11)
Nếu x chia 5 dư 2, y chia 5 dư 4 và ngược lại thì x2+y2 chia hết cho 5
=>x5y-xy5 chia hết cho 5 (12)
Từ (6),(7),(8),(9),(10),(11)và (12)
=> x5y-xy5 chia hết cho 5 với mọi x,y nguyên (15)
Từ (13),(14) và (15) Mà (3;4;5)=1
=>x5y-xy5 chia hết cho 30 với mọi x,y nguyên
=>đpcm
Đặt \(xy-12x+15y\)là (*)
Từ phương trình (1) ta có \(x^2-3xy+2y^2+x-y=0\Leftrightarrow\left(x-y\right)\left(x-2y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y-1\end{cases}}\)
Với \(x=y\)thay vào (2) ta có \(x^2-2x^2+x^2-5x+7x=0\Leftrightarrow x=0\Rightarrow x=y=0\)
Thay \(x=y=0\)vào (*) ta thấy 0.0-12.0+15.0=0(tm)
Với \(x=2y-1\Rightarrow\left(2y-1\right)^2-2\left(2y-1\right)y+y^2-5\left(2y-1\right)+7y=0\)
\(\Leftrightarrow4y^2-4y+1-4y^2+2y+y^2-10y+5+7y=0\)
\(\Leftrightarrow y^2-5y+6=0\Leftrightarrow\left(y-2\right)\left(y-3\right)=0\Leftrightarrow\orbr{\begin{cases}y=2\\y=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Với \(x=3;y=2\)thay vào (*) ta thấy \(3.2-12.3+15.0=0\left(tm\right)\)
Với \(x=5;y=3\)thay vào (*) ta thấy \(5.3-12.5+15.3=0\left(tm\right)\)
Vậy .....
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
\(x^5y-xy^5=xy\left(x^4-y^4\right)\)
\(=xy\left(x^4-1+1-y^2\right)\)
\(=xy\left(x^4-1\right)-xy\left(y^4-1\right)\)
\(=xy\left(x^2-1\right)\left(x^2+1\right)-xy\left(y^2-1\right)\left(y^2+1\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)\)
Xét \(xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=xy\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)\)
\(=xy\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5xy\left(x-1\right)\left(x+1\right)\)
\(=y.\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5y\left(x-1\right)x\left(x+1\right)\)
Do x-2 ; x-1 ; x ; x+1 ; x+2 là 5 số liên tiếp
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2;3;5\)
Mà (2;;3;5) = 1
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮\left(2.3.5=30\right)\)
\(\Rightarrow y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\)
Lại có \(5\left(x-1\right)x\left(x+1\right)⋮2;3;5\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow5y\left(x-1\right)x\left(x+1\right)⋮30\)
Do đó \(y\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)-5y\left(x-1\right)x\left(x+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)⋮30\)
Tương tự \(xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow xy\left(x-1\right)\left(x+1\right)\left(x^2+1\right)-xy\left(y-1\right)\left(y+1\right)\left(y^2+1\right)⋮30\)
\(\Rightarrow x^5y-xy^5⋮30\)
Bài 1:
x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)
=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)
=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)
Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5
=>xy(x-1)(x+1)(x2+1) chia hết cho 30
Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30
Nên x5y-xy5 chia hết cho 30
Bài 2:
x2+y2+z2=y(x+z)
<=>x2+y2+z2-yx-yz=0
<=>2x2+2y2+2z2-2yx-2yz=0
<=>(x – y)2 + (y – z)2 + x2 + z2 = 0
<=>x – y = y – z = x = z = 0
<=>x=y=z=0
Ta có
x2-yz=a
y2-zx=b
z2-xy=c
=>x3-xyz=ax
y3-xyz=by
z3-xyz=cz
=> x3+y3+z3-3xyz=ax+by+cz
Lại có
x3+y3+z3-3xyz
=(x+y)3-3x2y-3xy2+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
Áp dụng hằng đẳng thức x3+y3=(x+y)(x2-xy+y2) ta được:
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
( Hình như phải Chứng minh ax+by+cz chia hết cho x+y+z chứ nhỉ, nếu ko phải thì cho mik srr nhé, nếu đúng như mình nói thì bạn làm như trên nha)
ak mình nhầm tẹo srr nha, đến chỗ
(x+y+z)(x2+y2+z2-xy-yz-zx)
Vì x2-yz=a, y2-zx=b, z2- xy=c
=>x2+y2+z2-xy-yz-zx=a+b+c
=>ax+by+cz=(x+y+z)(a+b+c)
=> DPCM
a, Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left(\left(x+y\right)^2-2xy-xy\right)\)
\(=1\left(1^2-3\left(-1\right)\right)=1\left(1^2+3\right)=4\)
b, Ta có : \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(\left(x-y\right)^2+3xy\right)\)
\(=1\left(1+3.9\right)=19\)
Lời giải:
$P=xy(x^4-y^4)-30xy^2$
Khi đó muốn cm $P\vdots 30$ thì ta chỉ cần chỉ ra $xy(x^4-y^4)\vdots 30$ với mọi $x,y$ nguyên.
Nếu $x,y$ cùng tính chẵn lẻ thì $x^4, y^4$ cũng cùng tính chẵn lẻ.
$\Rightarrow x^4-y^4$ chẵn
$\Rightarrow xy(x^4-y^4)\vdots 2$
Nếu $x,y$ khác tính chẵn lẻ, nghĩa là 1 trong 2 số là số chẵn.
$\Rightarrow xy\vdots 2\Rightarrow xy(x^4-y^4)\vdots 2$
Vậy $xy(x^4-y^4)\vdots 2(*)$
--------------------------------------
Mặt khác:
Nếu 1 trong 2 số $x,y\vdots 5$ thì hiển nhiên $xy(x^4-y^4)\vdots 5$
Nếu $x,y$ đều không chia hết cho 5 thì $x^2, y^2$ cũng không chia hết cho $5$.
Mà 1 scp khi chia cho 5 dư $0,1,4$ nên lúc này $x^2, y^2$ chia 5 dư $1$ hoặc $4$
$xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)$.
$x^2, y^2$ mà cùng chia 5 dư $1$ hoặc cùng chia $5$ dư $4$ thì $x^2-y^2\vdots 5\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
$x^2, y^2$ mà chia 5 khác số dư thì 1 số chia 5 dư 1, một số chia 5 dư 4 nên $x^2+y^2\vdots 5$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 5$
Vậy tóm lại $xy(x^4-y^4)\vdots 5(**)$
-----------------
Nếu 1 trong 2 số $x,y$ chia hết cho 3 thì hiển nhiên $xy(x^4-y^4)\vdots 3$
Nếu cả 2 số $x,y$ đều không chia hết cho 3 thì $x^2, y^2$ chia 3 dư 1 (tính chất scp)
$\Rightarrow x^2-y^2\vdots 3$
$\Rightarrow xy(x^4-y^4)=xy(x^2-y^2)(x^2+y^2)\vdots 3 (***)$
Từ $(*); (**); (***)\Rightarrow xy(x^4-y^4)\vdots (2.3.5)$
Hay $xy(x^4-y^4)\vdots 30$
$\Rightarrow P\vdots 30$