Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{x^2-2x}{x^2-4}=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b) \(\dfrac{x^2+5x+4}{x^2-1}=\dfrac{x^2+x+4x+4}{x^2-1}=\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+4}{x-1}\)
c) \(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)
\(=\dfrac{x^4+4x^2-4x^2+4}{x^3+2x-2x^2-x^2+2x-1-1}\)
\(=\dfrac{\left(x^2+2\right)^2-4x^2}{\left(x^3+2x-2x^2\right)-\left(x^2-2x+2\right)}\)
\(=\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x\left(x^2+2-2x\right)-\left(x^2+2-2x\right)}\)
\(=\dfrac{x^2+2+2x}{x-1}\)
Bài 2:
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{10}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}:\dfrac{1+x^2-2x}{x}\)
\(=\dfrac{1}{x+1}\)
c) Trong ngoặc giữa hai phân số là dấu gì vậy ?
c) \(8x^3-1=8x^2+4x+2\)
<=> \(\left(2x-3\right)\left(4x^2+2x+1\right)=0\)
<=> \(2x-3=0\) hoặc \(4x^2+2x+1=0\)
Th1: x=\(\dfrac{3}{2}\)
Th2: Vô nghiệm
Vậy x=\(\dfrac{3}{2}\)
\(\text{a) }\dfrac{2x^2-x-1}{2}-3x^2+x+4=\left(5-x\right)\left(2x+4\right)\\ \Leftrightarrow\left(\dfrac{2x^2-x-1}{2}-3x^2+x+4\right)2=\left(5-x\right)\left(2x+4\right)2\\ \Leftrightarrow2x^2-x-1-6x^2+2x+8=\left(5-x\right)\left(4x+8\right)\\ \Leftrightarrow-4x^2+x+7=20x+40-4x^2-8x\\ \Leftrightarrow-4x^2+x+4x^2-12x=40-7\\ \Leftrightarrow-11x=33\\ \Leftrightarrow x=-3\\ \text{Vậy }S=\left\{-3\right\}\)
\(\text{b) }\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\dfrac{\left(x-1\right)\left(2x+4\right)}{2}+1\\ \Leftrightarrow\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1=\left(x-1\right)\left(x+2\right)+1\\ \Leftrightarrow\left(\dfrac{\left(2x-5\right)\left(3x+7\right)}{4}+2x-1\right)4=\left(x^2-x+2x-2+1\right)4\\ \Leftrightarrow\left(2x-5\right)\left(3x+7\right)+8x-4=\left(x^2+x-1\right)4\\ \Leftrightarrow6x^2-15x+14x-35+8x-4=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-39=4x^2+4x-4\\ \Leftrightarrow6x^2+7x-4x^2-4x-39+4=0\\ \Leftrightarrow2x^2+3x-35=0\\ \Leftrightarrow2x^2+10x-7x-35=0\\ \Leftrightarrow\left(2x^2+10x\right)-\left(7x+35\right)=0\\ \Leftrightarrow2x\left(x+5\right)-7\left(x+5\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-5\end{matrix}\right.\\ \\ \text{Vậy }S=\left\{\dfrac{7}{2};-5\right\}\)
\(\text{c) }8x^3-1=8x^2+4x+2\\ \Leftrightarrow\left(2x-1\right)\left(4x^2+2x+1\right)=2\left(4x^2+2x+1\right)\\ \Leftrightarrow2x-1=2\\ \Leftrightarrow2x=3\\ \Leftrightarrow x=\dfrac{3}{2}\\ \text{Vậy }S=\left\{\dfrac{3}{2}\right\}\)
\(\text{d) }\left(x^2+x+1\right)\left(x^2-x+1\right)=x^6-1\\ \Leftrightarrow\left(x^3+1\right)\left(x^3-1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x^2-x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\\ \Leftrightarrow\left(x+1\right)\left(x-1\right)=1\\ \Leftrightarrow x^2-1=1\\ \Leftrightarrow x^2=2\\ \Leftrightarrow x=\sqrt{2}\\ \text{Vậy }S=\left\{\sqrt{2}\right\}\)
\(\text{e) }\left(x^3+2x\right)\left(x^2+4\right)=\left(x^2+6x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+2x^2+4x^2+8\right)\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[\left(x^2+2x^2\right)+\left(4x^2+8\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left[x^2\left(x^2+2\right)+4\left(x^2+2\right)\right]\left(3-2x\right)\\ \Leftrightarrow x\left(x^2+2\right)\left(x^2+4\right)=\left(x^2+4\right)\left(x^2+2\right)\left(3-2x\right)\\ \Leftrightarrow x=3-2x\\ \Leftrightarrow3x=3\\ \Leftrightarrow x=1\\ \text{Vậy }S=\left\{1\right\}\)
f) Kiểm tra lại hạng tử thứ 2 ở vế phải.
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a) \(\left|x-1\right|+\left|x-2\right|>x+3\)
ta có các trường hợp
trường hợp 1:\(\left|x-1\right|< 0\Leftrightarrow\left|x-2\right|< 0\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=-x+1\\\left|x-2\right|=-x+2\end{matrix}\right.\Leftrightarrow x< 1\)
trường hợp 2: \(\left|x-1\right|\ge0và\left|x-2\right|< 0\Leftrightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-x+2\end{matrix}\right.\Leftrightarrow1\le x< 2\)
trường hợp 3:\(\left|x-2\right|\ge0\Leftrightarrow\left|x-1\right|>0\Leftrightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Leftrightarrow x\ge2\)\(\) \(\)
xét trường hợp 1:ta có BPT:
\(-x+1-x+2>x+3\Leftrightarrow-x-x-x>-1-2+3\\ \Leftrightarrow-3x>0\Leftrightarrow x< 0\)
vì điều kiện là x<1 nên mọi giá trị của x<0 đều thỏa mãn
trường hợp 2:
\(x-1-x+2>x+3\Leftrightarrow x-x-x>1-2+3\\ \Leftrightarrow-x>2\Leftrightarrow x< -2\)
vì điều kiện là \(1\le x< 2\) nên không có giá trị nào của x TM
trường hợp 3:
\(x-1+x-2>x+3\Leftrightarrow x+x-x>1+2+3\\ \Leftrightarrow x>6\)
vì điều kiện là x>=2 nên với mọi giá trị x>6 đều TM
Vậy nghiệm BPT là: x<0 hoặc x>6
c)
\(\left(x+5\right)\left(7-2x\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+5>0\\7-2x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-5\\-2x>-7\Leftrightarrow x< \dfrac{7}{2}\end{matrix}\right.\Leftrightarrow-5< x< \dfrac{7}{2}\\\left\{{}\begin{matrix}x+5< 0\\7-2x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -5\\-2x< -7\Leftrightarrow x>\dfrac{7}{2}\end{matrix}\right.\end{matrix}\right.\)
Vì trường hợp 2 không có giá trị nào của x TM nên ta loại
Vậy tập nghiệm của BPT là {x/5<x<7/2}
a: \(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{5}\cdot2\)
\(=\dfrac{10}{5}\cdot2=4\)
b: \(=\dfrac{x}{x-3}-\dfrac{x\left(x+3\right)}{2x+3}\cdot\dfrac{x^2+6x+9-x^2}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x}{x-3}-\dfrac{3}{x-3}=1\)
Giải:
a) \(\left(x-2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
Vậy ...
b) \(\dfrac{-1}{1-x}-\dfrac{7}{x+2}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\) (1)
ĐKXĐ: \(x\ne1;x\ne-2\)
\(\left(1\right)\Leftrightarrow\dfrac{1}{x-1}-\dfrac{7}{x+2}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{1\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow1\left(x+2\right)-7\left(x-1\right)=3\)
\(\Leftrightarrow x+2-7x+7=3\)
\(\Leftrightarrow-6x+9=3\)
\(\Leftrightarrow-6x=-6\)
\(\Leftrightarrow x=1\) (Không thoả mãn ĐKXĐ)
Vậy ...
c) \(10x-2\left(2x+4\right)=2x\)
\(\Leftrightarrow10x-4x-8=2x\)
\(\Leftrightarrow10x-4x-2x=8\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy ...
a, \(\left(x-2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{2;1;-1\right\}\)
b, \(\dfrac{-1}{1-x}-\dfrac{7}{x+2}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\)(ĐKXĐ: \(x\ne1;x\ne-2\))
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{7}{x+2}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{x+2-7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\dfrac{3}{\left(x-1\right)\left(x+2\right)}\)
\(\Rightarrow x+2-7\left(x-1\right)=3\)
\(\Leftrightarrow x+2-7x+7=3\)
\(\Leftrightarrow x-7x=3-2-7\)
\(\Leftrightarrow-6x=-6\)
\(\Leftrightarrow x=1\)(KTMĐK)
Vậy phương trình vô nghiệm.
c, \(10x-2\left(2x+4\right)=2x\)
\(\Leftrightarrow10x-4x-8=2x\)
\(\Leftrightarrow10x-4x-2x=8\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\)
Vậy phương trình có nghiệm là \(x=2\)