\(\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).....\left(1-\frac{1}{1+2+3+...+2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)

c)  C = ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 79 - 80 )

     C = ( -1 ) + ( -1 ) + ... + ( -1 )

     C = ( -1 ) x ( 80 - 1 + 1 ) : 2

     C = ( -1 ) x 80 : 2

     C = ( -40 )

4 tháng 7 2017

C=1-2+3-4+...+79-80

=(1-2)+(3-4)+...+(79-80)

=-1+(-1)+...+(-1) (có 80 số hạng bàng -1)

=-1*80

=-80

A= E387E4837

B = 883433

C = UỲUWFHQWURY48E3947

25 tháng 2 2017

404154/2013

12 tháng 7 2018

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

15 tháng 7 2018

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

4 tháng 8 2015

=>\(A=\frac{5-2}{5}.\frac{7-2}{7}.\frac{9-2}{9}....\frac{99-2}{99}\)

=>\(A=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}.....\frac{97}{99}=\frac{3.5.7.....97}{5.7.9.....99}=\frac{3.\left(5.7.9.....97\right)}{99.\left(5.7.9.....97\right)}=\frac{3}{99}=\frac{1}{3}\)