\(2^{2015}.7^{2020}\)va B=\(2^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2018

a/ \(A.B=\left(2^{2015}.7^{2020}\right).\left(2^{2020}.7^{2015}\right)\)

\(A.B=\left(2^{2015}.2^{2020}\right).\left(7^{2020}.7^{2015}\right)\)

\(A.B=2^{4035}.7^{4035}\)

Còn nhân 2 đơn thức thì giống như trên :

\(\left(x^{2015}.y^{2020}\right).\left(x^{2020}.y^{2015}\right)\)

\(=\left(x^{2015}.x^{2020}\right).\left(y^{2020}.y^{2015}\right)\)

\(=x^{4035}.y^{4035}\)

18 tháng 2 2019

hay pết

15 tháng 2 2018

\(\left(\dfrac{1}{3}x^3y\right)\left(-xy\right)^2=\left(\dfrac{1}{3}x^3y\right).x^2y^2=\dfrac{1}{3}x^5y^3\)

Bậc: 5

Hệ số: \(\dfrac{1}{3}\)

15 tháng 2 2018

ta có (sau khi nhân) đơn thưc

-\(\frac{1}{3}\)x5y3

bậc là 5. hệ số -1/3

10 tháng 11 2019

a) 74x.(3312+33332020+333333303030+3333333342424242)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=3247​x.(1233​+20203333​+303030333333​+4242424233333333​)=32

74x.(3312+3320+3330+3342)=32\frac{7}{4}x.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=3247​x.(1233​+2033​+3033​+4233​)=32

74x.(333.4+334.5+335.6+336.7)=32\frac{7}{4}x.\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)=3247​x.(3.433​+4.533​+5.633​+6.733​)=32

74x.33.(13−14+14−15+15−16+16−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=3247​x.33.(31​−41​+41​−51​+51​−61​+61​−71​)=32

74x.33.(13−17)=32\frac{7}{4}x.33.\left(\frac{1}{3}-\frac{1}{7}\right)=3247​x.33.(31​−71​)=32

74x.33⋅421=32\frac{7}{4}x.33\cdot\frac{4}{21}=3247​x.33⋅214​=32

10 tháng 11 2019

b) 13+16+110+115+...+2x.(x−1)=20072009\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{2}{x.\left(x-1\right)}=\frac{2007}{2009}31​+61​+101​+151​+...+x.(x−1)2​=20092007​

26+212+220+230+...+2(x−1).x=20072009\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}62​+122​+202​+302​+...+(x−1).x2​=20092007​

22.3+23.4+24.5+25.6+...+2(x−1).x=20072009\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{\left(x-1\right).x}=\frac{2007}{2009}2.32​+3.42​+4.52​+5.62​+...+(x−1).x2​=20092007​

2.(12−13+13−14+14−15+15−16+...+1x−1−1x)=200720092.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x-1}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21​−31​+31​−41​+41​−51​+51​−61​+...+x−11​−x1​)=20092007​

2.(12−1x)=200720092.\left(\frac{1}{2}-\frac{1}{x}\right)=\frac{2007}{2009}2.(21​−x1​)=20092007​

1−2x=200720091-\frac{2}{x}=\frac{2007}{2009}1−x2​=20092007​

2x=22009\frac{2}{x}=\frac{2}{2009}x2​=20092​

=> x = 2009

22 tháng 8 2016

Ta có:
\(\frac{-2105}{2016}< -1\)

\(\frac{-2001}{2000}>-1\)

\(\Rightarrow\frac{-2105}{2016}< -1< \frac{-2001}{2000}\Rightarrow\frac{-2015}{2016}< \frac{-2001}{2000}\)

Ta có:

\(1-\frac{-999}{605}=\frac{1640}{605}\)

\(1-\frac{1199}{-805}=\frac{1640}{805}\)

Vì \(\frac{1640}{605}< \frac{1640}{805}\) nên \(\frac{-999}{605}>\frac{1199}{-805}\)


 

 

22 tháng 8 2016

-2015/2016 và -2001/2000

Ta có: 2015/2016 < 1

          2001/2000 > 1

=> 2015/2016 < 2001/200 => -2015/2016 > -2001/2000

 

4 tháng 1 2020

\(P=\left|x-28\right|+\left|x-3\right|+\left|x-2020\right|\)

\(=\left(\left|x-3\right|+\left|x-2020\right|\right)+\left|x-28\right|\)

Đặt \(A=\left|x-3\right|+\left|x-2020\right|\)

Ta có: \(A=\left|x-3\right|+\left|x-2020\right|\)

                \(=\left|x-3\right|+\left|2020-x\right|\ge\left|x-3+2020-x\right|=2017\left(1\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left(x-3\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\2020-x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3< 0\\2020-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le2020\end{cases}}\)hoặc \(\hept{\begin{cases}x< 3\\x>2020\end{cases}\left(loai\right)}\)

\(\Leftrightarrow3\le x\le2020\)

Ta có: \(\left|x-28\right|\ge0;\forall x\left(2\right)\)

Dấu"="xảy ra \(\Leftrightarrow\left|x-28\right|=0\)

                        \(\Leftrightarrow x=28\)

Từ (1) và (2)\(\Rightarrow A+\left|x-28\right|\ge2017\)

Hay \(P\ge2017\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}3\le x\le2020\\x=28\end{cases}}\Leftrightarrow x=28\)

Vậy \(P_{min}=2017\Leftrightarrow x=28\)

14 tháng 3 2019

Ta có:\(\frac{3-x}{2021}+\frac{2020-x}{2019}+\frac{4033-x}{2017}+\frac{6042-x}{2015}=10\)

\(\Leftrightarrow\frac{3-x}{2021}-1+\frac{2020-x}{2019}-2+\frac{4033-x}{2017}-3+\frac{6042-x}{2015}-4=0\)

\(\Leftrightarrow\frac{3-x-2021}{2021}+\frac{2020-x-4038}{2019}+\frac{4033-x-6051}{2017}+\frac{6042-x-8060}{2015}=0\)

\(\Leftrightarrow\frac{-2018-x}{2021}+\frac{-2018-x}{2019}+\frac{-2018-x}{2017}+\frac{-2018-x}{2015}=0\)

\(\Leftrightarrow-\left(2018+x\right)\left(\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}\right)=0\)

\(\Leftrightarrow2018+x=0.Do\frac{1}{2021}+\frac{1}{2019}+\frac{1}{2017}+\frac{1}{2015}>0\)

\(\Leftrightarrow x=-2018\)

V...