\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6c+9}{x^2-9}+\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

\(\text{a, ĐKXĐ: }\hept{\begin{cases}x+3\ne0\\x-3\ne0\\3x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\mp3\\x\ne0\end{cases}}\)

\(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x+3\right)\left(x-3\right)}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)

\(=\frac{x-x-3}{x+3}\cdot\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

b, với x=\(-\frac{1}{2}\)ta có:

\(A=-\frac{1}{\left(-\frac{1}{2}\right)^2}=-4\)

c, Để A<0 thì \(-\frac{1}{x^2}< 0\text{ mà }x^2>0\left(\text{vì x khác 0 ĐKXĐ}\right)\)

Với x khác 0 thì thỏa mãn!

10 tháng 2 2018

a)   ĐKXĐ:  \(x\ne\pm3\)

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\frac{\left(3-x\right)\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=\frac{3\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)

\(=-\frac{1}{x^2}\)

31 tháng 3 2018

\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)

\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)

\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)

\(A=\frac{-1}{x^2}\)

31 tháng 3 2018

Ta có :\(x^2+x-6=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)

\(\Rightarrow A=\frac{-1}{2^2}\)

\(A=\frac{-1}{4}\)

13 tháng 4 2019

bài1   A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)

b)  thế \(x=-\frac{1}{2}\)vào biểu thức A

 \(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)

c)  A=\(-\frac{1}{3x}< 0\)

VÌ (-1) <0  nên  3x>0

                        x >0

10 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne\pm3\\x\ne0\end{cases}}\)

a) \(B=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}\right):\frac{3x^2}{x+3}\)

\(\Leftrightarrow B=\left(\frac{3-x}{x+3}\cdot\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)

\(\Leftrightarrow B=\frac{\left(3-x\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{3x^2}\)

\(\Leftrightarrow B=-\frac{x+3}{3x^2}\)

b) Khi \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=3\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow B=-\frac{1+3}{3.1^2}=-\frac{4}{3.}\)

c) Để B > 0

\(\Leftrightarrow-\frac{x+3}{3x^2}>0\)

\(\Leftrightarrow\frac{x+3}{3x^2}< 0\)

\(\Leftrightarrow x+3< 0\) (Do 3x2 > 0; loại giá trị = 0)

\(\Leftrightarrow x< -3\)

Vậy để \(B>0\Leftrightarrow x< -3\)

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

11 tháng 8 2017

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left[\frac{-\left(x-3\right)\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)^2}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\frac{-x-3+x}{x+3}.\frac{x+3}{3x^2}=\frac{-3}{x+3}.\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b ) Để \(A=-\frac{1}{x^2}< 0\forall x\ne0\)  

Vậy \(x\ne0\) thì \(A< 0\)