\(\sqrt{\text{3x - 2}}\) + (x + 1)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 8 2021

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow x\sqrt{3x-2}-x^2+\left(x+1\right)\sqrt{5x-1}-\left(x+1\right)^2+x^2+\left(x+1\right)^2-8x+3=0\)

\(\Leftrightarrow x\left(\sqrt{3x-2}-x\right)+\left(x+1\right)\left(\sqrt{5x-1}-x-1\right)+2\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\dfrac{-x\left(x^2-3x+2\right)}{\sqrt{3x-2}+x}+\dfrac{-\left(x+1\right)\left(x^2-3x+2\right)}{\sqrt{5x-1}+x+1}+2\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)+\left(2-\dfrac{x}{\sqrt{3x-2}+x}-\dfrac{x+1}{\sqrt{5x-1}+x+1}\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\dfrac{\sqrt{3x-2}}{\sqrt{3x-2}+x}+\dfrac{\sqrt{5x-1}}{\sqrt{5x-1}+x+1}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\) (ngoặc đằng sau luôn dương)

\(\Leftrightarrow...\)

4 tháng 8 2019


╔┓┏╦━━╦┓╔┓╔━━╗
║┗┛║┗━╣┃║┃║ 0 0 ║
║┏┓║┏━╣┗╣┗╣╰°╯║
╚┛┗╩━━╩━╩━╩-2019||

4 tháng 8 2019

a)   x=-1

x=8

4 tháng 8 2019

a)  x=8 hoặc x=-1

Đặt ẩn phụ

g)  x=1 hoặc x=2 hoặc x=-3

Phân tích thành nhân tử rồi xét giá trị

4 tháng 8 2019

e) 

\(\sqrt{2x+1}-\sqrt{3x}=x-1\) 1

<=>\(2x+1-3x=\left(x+1\right)^2\)

<=>\(2x+1-3x=x^2-2x+1\)

<=> \(2x-3x-x^2+2x=1-1\)

<=> \(x-x^2=0\)

<=> \(x\left(1-x\right)=0\)

<=> \(x=0\)Hoặc \(1-x=0\)

trg hợp 1 : \(x=0\)

th2: \(1-x=0\)<=>\(x=1\)

4 tháng 8 2019

\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(x+1\right)\left(8-x\right)}=3\)

\(đkxđ\Leftrightarrow\hept{\begin{cases}x+1\ge0\\8-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le8\end{cases}\Rightarrow}-1\le x\le8}\)

Đặt \(\sqrt{1+x}=a\Rightarrow x+1=a^2.\)

\(a+b+ab=3\)

và \(\sqrt{8-x}=b\Rightarrow8-x=b^2\)\(\left(a,b\ge0\right)\)

Cộng hai vế xuống ta có :

\(a^2+b^2=x+1+8-x=9\)

Theo phương trình ta lại có :

\(a+b+ab=3\)

Ta có hệ phương trình :

\(\hept{\begin{cases}a^2+b^2=9\\a+b+ab=3\end{cases}}\)

Giải hệ ra tính nốt nhá :)) Mình nghĩ bài này chỉ làm theo cách này ngắn nhất thôi 

a) x=0

b)x vô ngiệm

8 tháng 8 2017

a)\(\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)

\(pt\Leftrightarrow\left(3x+1\right)\sqrt{3x+1}=8x^2+5x+1\)

\(\Leftrightarrow\frac{\left(3x+1\right)^3-1}{\left(3x+1\right)\sqrt{3x+1}+1}=8x^2+5x\)

\(\Leftrightarrow\frac{\left(3x+1-1\right)\left[\left(3x+1\right)^2+3x+2\right]}{\left(3x+1\right)\sqrt{3x+1}+1}=x\left(8x+5\right)\)

\(\Leftrightarrow\frac{9x\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-x\left(8x+5\right)=0\)

\(\Leftrightarrow x\left(\frac{9\left(3x^2+3x+1\right)}{\left(3x+1\right)\sqrt{3x+1}+1}-\left(8x+5\right)\right)=0\)

\(\Rightarrow x=0\), nghiệm còn lại khó quá t gg =))

b)\(9x+17=6\sqrt{8x+1}+4\sqrt{x+3}\)

ĐK:\(x\ge-\frac{1}{8}\)

\(pt\Leftrightarrow9x-9=6\sqrt{8x+1}-18+4\sqrt{x+3}-8\)

\(\Leftrightarrow9\left(x-1\right)=\frac{36\left(8x+1\right)-324}{6\sqrt{8x+1}+18}+\frac{16\left(x+3\right)-64}{4\sqrt{x+3}+8}\)

\(\Leftrightarrow9\left(x-1\right)=\frac{288x-288}{6\sqrt{8x+1}+18}+\frac{16x-16}{4\sqrt{x+3}+8}\)

\(\Leftrightarrow9\left(x-1\right)-\frac{288\left(x-1\right)}{6\sqrt{8x+1}+18}-\frac{16\left(x-1\right)}{4\sqrt{x+3}+8}=0\)

\(\Leftrightarrow\left(x-1\right)\left(9-\frac{288}{6\sqrt{8x+1}+18}-\frac{16}{4\sqrt{x+3}+8}\right)=0\)

Suy ra x=1 là nghiệm duy nhất

12 tháng 9 2017

mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!

5 tháng 10 2017

Bài dễ mà :
a, \(\sqrt{x+5}=x+15 \)
\(x+5=x^2+30x+225\)
\(x^2+29x+220=0\)
\(\left(x+14,5\right)^2+9,75=0\)
pt vô nghiệm

26 tháng 7 2019

MN ƠI GIÚP EM

26 tháng 7 2019

mn giúp e

25 tháng 7 2019

MN ƠI GIÚP E

8 tháng 8 2017

\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)

\(\Leftrightarrow4-\left(1-x\right)^2=3\)

\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)

\(\Leftrightarrow4-1+2x-x^2-3=0\)

\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

vay x=0 ; x=2

\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)

\(\Leftrightarrow3x^2-5=4\)

\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)

vay \(x=\sqrt{3}\)

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)

\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)

\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)

xay x=51

\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)

\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)

\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)

\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)

vay \(x=\frac{-11}{5}\)

nhung cau nay binh phuong len la xong 

y 3 xem lai de bai 

y 4,7 ko biet lam

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1