Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x/2 = y/3 = z/4 va x + y + z =18.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/2 = y/3 = z/4 = x+y+z/2+3+4 = 18 /9 =2
=> x= 2*2 =4
y= 2* 3=6
z=2*4= 8
Vậy x=4; y=6; z=8.
b) x/5 = y/-6 = z/7 va x + y - z =32.
Áp dụng tính chất của dãy tỉ số bằng nhau:
x/5 = y/-6 =z/7 =x+y-z/ 5+(-6) -7 = 32/-8 =-4
=> x= -4 *5 = -20
y= -4* (-6)= 24
z= -4 * 7 = -28
Vậy x=-20 ; y= 24; x= -28.
c) x/5 = y/3 = z/2 va 2x + 3y + 4z =54.
x/5 = 2x/10
y/3 = 3y/9
z/2 = 4z/8
Áp dụng tính chất của dãy tỉ số bằng nhau:
2x/10 = 3y/9 = 4x/8 = 2x+3y+4z/10+9+8 = 54/27= 2
=> x= 2*5 = 10
y= 2*3 =6
x= 2*2 =4
Vậy x= 10; y=6; z=4
d) x/2 = y/3 = z/6 va 3x - 2y + 2z = 24.
x/2 =3x/6
y/3 = 2y/6
z/6 = 2z/12
Áp dụng tính chất của dãy tỉ số bằng nhau:
3x/6 = 2y/6 = 2z/12 = 3x- 2y +2z/6-6+12 = 24/12 =2
=> x= 2*2 =4
y= 2*3 =6
z= 2* 6 =12
Vậy x=4; y=6; z=12
1, xy+2x-2y-5=0
=> x.( y+2)-2.(y+2)=5
=> (y+2).(x-2)=5
Vì x, y thuộc Z => y+2; x-2 thuộc Z
Mà 5=1.5=-1.(-5) và hoán vị của chúng
Ta có bảng sau:
y+2 1 5 -1 -5
x-2 5 1 -5 -1
y -1 3 -3 -7
x 7 3 -3 1
nHỚ K CHO MIK NHÉ
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chính phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
=> 2x2 - 2y2 + x - y = y2
=> 2(x2 - y2) + (x - y) = y2
=> 2.(x - y).(x+y) + (x - y) = y2
=> (x - y).(2x+ 2y + 1) = y2 là số chính phương (*)
Nhận xét: x - y và 2x + 2y + 1 nguyên tố cùng nhau (**) vì:
Gọi d = ƯCLN(x - y; 2x + 2y + 1)
=> x- y ; 2x + 2y + 1 chia hết cho d
=> y2 = (x - y).(2x+ 2y+ 1) chia hết cho d2 => y chia hết cho d
và (2x+ 2y+ 1) - 2(x - y) chia hết cho d => 4y + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
Từ (*)(**) => x - y và 2x + 2y + 1 là số chính phương
Tương tự: có 3y2 - 3x2 + y - x = -x2
=> 3(x2 - y2) + (x - y) = x2
=> 3(x - y)(x+y) + (x - y) = x2
=> (x - y).(3x+ 3y + 1) = x2 là số chính phương
Mà x - y là số chính phương nên 3x + 3y + 1 là số chonhs phương
=> ĐPCM
2/3x - 3/2x = 5/12
=> ( 2/3 - 3/2 )x = 5/12
=> -5/6x = 5/12
=> x = 5/12 : -5/6
=> x = -1/2
( x + 1/2 ) . ( 2/3 - 2x ) = 0
=> x + 1/2 = 0 hoặc 2/3 - 2x = 0
=> x = -1/2 hoặc x = 1/3
\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)
Chúc em học tốt nhé!
Bài này chỉ cần dùng phương pháp trực tiêu là xong rồi nhé!
Các bài sau em làm tương tự thôi nha!
\(\frac{1+2+2^2+...+2^{2008}}{1-2^{2008}}\)
Ta có: Đặt A = 1 + 2 + 22 + ... + 22008
2A = 2 + 22 + 23 + ... + 22009
2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)
A = 22009 - 1
=> \(\frac{1+2+2^2+...+2^{2008}}{1-2^{2008}}=\frac{2^{2009}-1}{1-2^{2008}}\)