K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2015

\(5A=5^2+5^3+....+5^{2011}\)

\(5A-A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+...+5^{2011}-5\)

4A = \(5^{2011}-5\)

A = \(\frac{5^{2011}-5}{4}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2009}+5^{2010}\right)\)

\(A=30.1+30.5^2+30.5^4+....+30.5^{2008}\)

\(A=30.\left(1+5^2+5^4+....+5^{2008}\right)\)

Vậy chia hết cho 30

1 tháng 4 2019

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

đi tui cần điểm hỏi đáp

1 tháng 4 2019

yêu cầu nghiêm túc

24 tháng 10 2023

ko bt lm

 

6 tháng 2 2017

Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4

        5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4

        5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4

suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4

Vậy 5^n - 1 chia hết cho 4 với n thuộc N

tk mk nha

9 tháng 2 2017

5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1

=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4

Bài 2:

1: \(2A=2+2^2+...+2^{2011}\)

=>\(A=2^{2011}-1>B\)

2: \(A=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B\)

3: \(A=1000^{10}\)

\(B=2^{100}=1024^{10}\)

mà 1000<1024

nên A<B

5: \(A=3^{450}=27^{150}\)

\(B=5^{300}=25^{150}\)

mà 27>25

nên A>B

1 tháng 12 2017

Ta có : A = (51+52+53)+(54+55+56)+...+(528+529530)

          A = 155 + 53.(51+52+53)+...+527.(51+52+53)

          A = 155 + 53. 155+...+527.155

          A = 155.(1+53+...+527)  chia hết cho 155 

Vậy A chia hết cho 155

(5+52+53)+(54+55+56)+...+(528+529+530

= 155 +53(5+52+53)+...+527(5+52+53

=155+53.155+...+527.155 

=155(1+53+..+527) chia hết cho 155

9 tháng 8 2017

a) 

S = 4 + 42 + 43 + ... + 499 + 4100

S = ( 4 + 42 ) + ( 4+ 44 ) + ... + ( 499 + 4100 )

S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)

S = 4.5 + 43.5 + .. + 499.5

S = ( 4 + 43 + .. +499).5 => S \(⋮\)5

b) S = 2 + 22 + 23 + ... + 22009  + 22010

=> S \(⋮\)2

S = = 2 + 22 + 23 + ... + 22009 + 22010

S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )

S = 2.3 + 23.3 +... +22009.3

S = ( 2 + ... +22009 ) x 3

=> s\(⋮\) 3

=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6

4 tháng 12 2014

A=2^1+2^2+2^3+2^4+...+2^2010 

=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)

=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)

=2.3+2^3.3+...+2^2010.3

=(2+2^3+2^2010).3

=> A chia het cho 3

​​​​ 

 

10 tháng 12 2014

Mà câu c bạn đánh chia hết thành chết hết rồi kìa