Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
wwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
đi tui cần điểm hỏi đáp
Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4
5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4
5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4
suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4
Vậy 5^n - 1 chia hết cho 4 với n thuộc N
tk mk nha
5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1
=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4
Bài 2:
1: \(2A=2+2^2+...+2^{2011}\)
=>\(A=2^{2011}-1>B\)
2: \(A=\left(2010-1\right)\left(2010+1\right)=2010^2-1< B\)
3: \(A=1000^{10}\)
\(B=2^{100}=1024^{10}\)
mà 1000<1024
nên A<B
5: \(A=3^{450}=27^{150}\)
\(B=5^{300}=25^{150}\)
mà 27>25
nên A>B
Ta có : A = (51+52+53)+(54+55+56)+...+(528+529530)
A = 155 + 53.(51+52+53)+...+527.(51+52+53)
A = 155 + 53. 155+...+527.155
A = 155.(1+53+...+527) chia hết cho 155
Vậy A chia hết cho 155
(5+52+53)+(54+55+56)+...+(528+529+530)
= 155 +53(5+52+53)+...+527(5+52+53)
=155+53.155+...+527.155
=155(1+53+..+527) chia hết cho 155
a)
S = 4 + 42 + 43 + ... + 499 + 4100
S = ( 4 + 42 ) + ( 43 + 44 ) + ... + ( 499 + 4100 )
S = 4( 1 + 4) + 43.( 1 + 4) + ... + 499( 1 + 4)
S = 4.5 + 43.5 + .. + 499.5
S = ( 4 + 43 + .. +499).5 => S \(⋮\)5
b) S = 2 + 22 + 23 + ... + 22009 + 22010
=> S \(⋮\)2
S = = 2 + 22 + 23 + ... + 22009 + 22010
S = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
S = 2( 1 + 2 ) + 23( 1 + 2 ) + ... +22009( 1 + 2 )
S = 2.3 + 23.3 +... +22009.3
S = ( 2 + ... +22009 ) x 3
=> s\(⋮\) 3
=> S chia he^'t cho 2 va` 3 ne^n S \(⋮\) 6
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
\(5A=5^2+5^3+....+5^{2011}\)
\(5A-A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+...+5^{2011}-5\)
4A = \(5^{2011}-5\)
A = \(\frac{5^{2011}-5}{4}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2009}+5^{2010}\right)\)
\(A=30.1+30.5^2+30.5^4+....+30.5^{2008}\)
\(A=30.\left(1+5^2+5^4+....+5^{2008}\right)\)
Vậy chia hết cho 30