K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

undefined

Bạn vô đó để viết lại đề nha!

29 tháng 7 2021

Bạn gõ bằng công thức trực quan để được giúp đỡ nhanh hơn nhé, chứ mình nhìn thế không dịch được (Nhấp vào biểu tượng chữ M nằm ngang)

NV
20 tháng 7 2020

7.

ĐKXĐ: ...

\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow10ab=3\left(a^2+b^2\right)\)

\(\Leftrightarrow3a^2-10ab+3b^2=0\)

\(\Leftrightarrow\left(a-3b\right)\left(3b-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=3b\\3a=b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-x+1}=3\sqrt{x+1}\\3\sqrt{x^2-x+1}=\sqrt{x-1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=9x+9\\9x^2-9x+9=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-10x-8=0\\9x^2-10x+10=0\end{matrix}\right.\) (casio)

NV
20 tháng 7 2020

6.

ĐKXĐ: ...

\(\Leftrightarrow2x^2+4=3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+2b^2=3ab\)

\(\Leftrightarrow2a^2-3ab+2b^2=0\)

Phương trình vô nghiệm (vế phải là \(5\sqrt{x^3+1}\) sẽ hợp lý hơn)

15 tháng 9 2019

Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.

a) ĐK: \(x\ge-\frac{1}{4}\)

PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)

\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)

b) ĐK: \(x\ge-\frac{1}{2}\)

PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)

\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)

c) ĐK: \(x\ge-1\)

PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.

d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D

\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D

f) Liên hợp đi cho nó khỏe:v

15 tháng 9 2019

f) Liên hợp đi cho nó khỏe:D

ĐK: \(x\ge\frac{1}{5}\)

PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)

\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)

Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt