Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
ĐKXĐ : \(x\ne1;x\ne4\)
\(A=\frac{x^2-3x-4}{\left(x-1\right)\left(x-4\right)}=\frac{x^2-4x+x-4}{\left(x-1\right)\left(x-4\right)}=\frac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=\frac{x+1}{x-1}\)
Ta có \(A=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)
A \(\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow x-1\inƯ\left(2\right)\left(\text{Vì }x\inℤ\right)\)
<=> \(x-1\in\left\{1;-1;2;-2\right\}\)
<=> \(x\in\left\{2;0;3;-1\right\}\)
Vậy \(x\in\left\{2;0;3;-1\right\}\)thì A nguyên
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
Đây là 1 bài trong 1 đề t làm nộp gửi thầy nên t đưa ảnh nha,tại lúc đó đề sai nên trong bài giải có vài chữ ko liên quan
Làm tiếp \(M\ge-3\)
\(\frac{x+1}{2x}\ge-3\)
\(\frac{1}{2}+\frac{1}{2x}\ge-3\)
Đến đây dễ r
A= 4x2+(2x+3)(x+1)-9/ 9x2-4
A=4x2+2x2+3x+2x+3-9/9x2-22
A= 6x2+5x-6/(3x)2-22
A= 6x2-4x+9x-6/ (3x-2)(3x+2)
A= 2x(3x-2)+3(3x-2)/ (3x-2)(3x+2)
A= (3x-2)(2x+3)/(3x-2)(3x+2)
A=2x+3/3x+2
để a nguyên thì 2x +3 chia hết cho 3x+2
3(2x+3) chia hết cho 3x+2
6x+9 chia hết cho 3x+2
6x+4+5 chia hết cho 3x+2
6x+4 chia hết cho 3x+2
<=> 5 chia hết cho 3x+2
bạn lập bảng ra thì ra được x={1;-1}
NHẦM ĐỀ Ạ. KHÔNG PHẢI \(4^2\)mà là \(4x^2\)
Xin lỗi vì sự nhầm lẫn này ạ!
Mọi người làm thì ĐKXĐ x \(\ne\pm\frac{2}{3}\)
Rút gọn thì ra A= \(\frac{2x+3}{3x+2}\)
a. \(8x\left(x-2017\right)-2x+4034=0\)
\(8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\left(8x-2\right)\left(x-2017\right)=0\)
\(\Rightarrow TH1:8x-2=0\)
\(8x=2\)
\(x=\frac{1}{4}\)
\(TH2:x-2017=0\)
\(x=2017\)
Vậy \(x\in\left\{\frac{1}{4};2017\right\}\)
Bài 1
a) \(8x\left(x-2017\right)-2x+4034=0\)
\(\Rightarrow8x\left(x-2017\right)-2\left(x-2017\right)=0\)
\(\Rightarrow\left(x-2017\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}\)
a, \(A=\dfrac{4x^2+2x^2+5x+3-9}{9x^2-4}=\dfrac{6x^2+5x-6}{9x^2-4}=\dfrac{\left(3x-2\right)\left(2x+3\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{2x+3}{3x+2}\)
b, Ta có \(6x+9⋮3x+2\Leftrightarrow2\left(3x+2\right)+5⋮3x+2\Rightarrow3x+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)