Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Gọi số chính phương đó là \(a^2\).Do a là số nguyên nên a có dạng \(3k+1;3k+2;3k\)
Với \(a=3k\) thì \(a^2=9k^2⋮3\)
Với \(a=3k+1\) thì \(a^2=\left(3k+1\right)^2=9k^2+6k+1\) chia 3 dư 1
Với \(a=3k+2\) thì \(a^2=\left(3k+2\right)^2=9k^2+12k+3+1\) chia 3 dư 1
Vậy số chính phương chia 3 dư 0 hoặc 1
Gọi số chính phương đó là \(b^2\).Do b là số nguyên nên b có các dạng \(4k;4k+1;4k+2;4k+3\)
Tương tự xét như câu a nha.Ngại viết.
a=5n+1
b=5k+2
a^2=1 (mod 5)
b^2=4 (mod5)
(a^2+b^2)=0 (mod 5)
không được dùng thì khai triển ra
a^2+b^2=(5n+1)^2+(5k+2)^2
25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1.
Đó là cách làm của mình có j không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!
Gọi số chính phương đã cho là a^2 (a là số tự nhiên)
* C/m a^2 chia 3 dư 0 hoặc dư 1
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2.
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên)
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1.
Vậy số chính phương chia cho 3 dư 0 hoặc 1
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé.
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn?
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé:
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên)
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1
Việc còn lại là của bạn
Gọi số đó có dạng : a^2 (a thuộc N)
Nếu a chia hết cho 3 => a^2 chia hết cho 3
Nếu a=3k+1 (k thuộc N) => a^2 = 9k^2+6k+1 chia 3 dư 1
Nếu a=3k+2 thì a^2 = 9k^2+12k +4 chia 3 dư 1
Vậy a^2 chia 3 dư 0 hoặc 1
Nếu a =2q ( q thuộc N ) => a^2 = 4q^2 chia hết cho 4
Nếu a=2q+1 thì a^2 = 4q^2+4q+1 chia 4 dư 1
Vậy a^2 chia 4 dư 0 hoặc 1
=> ĐPCM
k mk nha
a) Số lẻ c ó dạng \(2k+1\left(k\in N\right)\)
Bình phương của số lẻ là :
\(\left(2k+1\right)^2=4k^2+4k+1\)
Mà \(4k^2+4k⋮4\)
\(\Leftrightarrow4k^2+4k+1\) chia 4 dư 1
\(\Leftrightarrow\) Bình phương của 1 số lẻ chia 4 dư 1
Chứng minh rằng:
a) Bình phương của một số lẻ chia cho 4 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có:
(2k+1)^2=4k^2+4k+1
Mà 4k^2+4k chia hết cho 4 nên 4k^2+4k+1 chia 4 dư 1.
Hay (2k+1) chia 4 dư 1
b) Bình phương của một số lẻ chia cho 8 dư 1
Bình phương của một số lẻ có dạng là (2k+1)^2
Ta có: (2k+1)^2=4k^2+4k+1
Ta lại có: 4k^2+4k chia hết cho 4
4k^2+4k chia hết cho 2
Suy ra 4k^2+4k chia hết cho 8
vậy 4k^2+4k+1 chia 8 dư 1
hay (2k+1)^2 chia 8 dư 1