Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Ta có : \(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
Tương tự : \(b^2c+b^2c+\frac{1}{bc^2}\ge3b;c^2a+c^2a+\frac{1}{ca^2}\ge3c\)
Cộng lại theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Dấu "=" xảy ra khi a = b = c = 1
đặt a = 2x + y + z; b = 2y + z + x; c = 2z + x + y (a; b ; c > 0)
=> a + b + c = 4.(x+ y + z) => x + y + z = (a+ b+ c) / 4
=> x = a - (x+ y + z) = a - (a+ b + c) / 4
y = b - (x + y + z) = b - (a+b+c) / 4
z = c - (x+y + z) = c - (a+b+c)/ 4
Khi đó : \(VT=1-\frac{a+b+c}{4a}+1-\frac{a+b+c}{4b}+1-\frac{a+b+c}{4c}\)
\(VT=3-\left(\frac{a+b+c}{4a}+\frac{a+b+c}{4b}+\frac{a+b+c}{4c}\right)=3-\frac{1}{4}.\left(a+b+c\right).\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(VT=3-\frac{1}{4}.\left(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\right)=3-\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\)
Với a, b > 0 ta có: a/b + b/ a > = 2
=> \(\frac{1}{4}.\left(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\right)\ge\frac{1}{4}.\left(3+2+2+2\right)=\frac{9}{4}\)
=> \(VT\le3-\frac{9}{4}=\frac{3}{4}\)
Dấu = xảy ra khi a= b = c => x = y = z
Câu b mình vừa làm rồi
a)
Áp dụng bđt Cauchy-Scharz:
\(\dfrac{x}{2x+y+z}+\dfrac{y}{2y+x+z}+\dfrac{z}{2z+x+y}\)
\(=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(x+y\right)+\left(y+z\right)}+\dfrac{z}{\left(x+z\right)+\left(y+z\right)}\)
\(\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)
\(=\dfrac{1}{4}.3=\dfrac{3}{4}\)
Dấu "=" khi \(x=y=z\)
Em ko nhớ là lớp 7 có học Cô-si nên chị đừng giải theo cách đó
Đặt \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}=A\)
Áp dụng TC DTSBN ta có :
\(A=\frac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}=\frac{x+2y+z}{a+2b+c+4a+2b-2c+4a-4b+c}\)
\(=\frac{x+2y+z}{9a}=\frac{1}{9}.\frac{x+2y+z}{a}\) (1)
\(A=\frac{2x+y+z}{2\left(a+2b+c\right)+2a+b-c+4a-4b+c}=\frac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b-c}\)
\(=\frac{2x+y-z}{9b}=\frac{1}{9}.\frac{2x+y-z}{b}\) (2)
\(A=\frac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)+4a-4b+c}=\frac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\)
\(=\frac{4x-4y+z}{9c}=\frac{1}{9}.\frac{4x-4y+z}{c}\)(3)
Từ (1);(2);(3) \(\Rightarrow\frac{a}{x+2y+z}=\frac{b}{2x+y+z}=\frac{c}{4x-4y+z}\) (đpcm)
Bài 1:
Ta có: \(\frac{\left(a+2012b\right)^2}{\left(b+2012c\right)^2}=\frac{a^2+2.2012.ab+2012^2.b^2}{b^2+2.2012.bc+2012^2.c^2}=\frac{a^2+2.2012.ab+2012^2.ac}{ac+2.2012.bc+2012^2.c^2}=\frac{a\left(a+2.2012.b+2012^2.c\right)}{c\left(a+2.2012.b+2012^2.c\right)}=\frac{a}{c}\)
Vậy...
Bài 2:
\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\Rightarrow\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
\(\Rightarrow\frac{a+2b+c}{x}=\frac{2\left(2a+b-c\right)}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}=\frac{a}{x+2y+z}\)(1)
\(\frac{2\left(a+2b+c\right)}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}=\frac{b}{2x+y-z}\) (2)
\(\frac{4\left(a+2b+c\right)}{4x}=\frac{4\left(2a+b-c\right)}{4y}=\frac{4a-4b+c}{z}=\frac{4a+8b+c-8a-4b+c+4a-4b+c}{4x-4y+z}=\frac{c}{4x-4y+z}\) (3)
Từ (1),(2),(3) suy ra \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
bạn trên nhầm -4b thành +4b ở bài 2 ở phần (1) nha bạn, nhưng mình cũng cảm ơn
Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!
a) Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (1)
\(\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z}\) (2)
Cộng vế vs vế (1);(2) ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{4}{x+y}+\frac{4}{y+z}\)
Mà: \(\frac{4}{x+y}+\frac{4}{y+z}=4\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\ge4\left(\frac{4}{x+2y+z}\right)=\frac{16}{x+2y+z}\)
=> \(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)
=> \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)
=> \(\frac{y}{x+2y+z}\le\frac{y}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\) (3)
Tương tự ta cũng có:
\(\frac{x}{2x+y+z}\le\frac{x}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\) (4)
\(\frac{z}{x+y+2z}\le\frac{z}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\) (5)
Từ (3);(4);(5) suy ra:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(2+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+2+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+2\right)\)
Vì: \(x,y,z>0\) nên áp dụng bđt cô-si ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2;\frac{y}{z}+\frac{z}{y}\ge2;\frac{x}{z}+\frac{z}{x}\ge2\)
Do đó:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\le\frac{1}{16}\left(6+2+2+2\right)=\frac{1}{16}\cdot12=\frac{3}{4}\)
b)
Vì: \(ab+bc+ca\le\\ a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
=> \(3\left(ab+bc+ca\right)\le0\)
=> \(ab+bc+ca\le0\)