Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho A=\(999993^{1999}-555557^{1997}\).Ta thấy:Ta lấy từng số cuối của chúng nhân với nhau.
999993^0=1;999993^1=.............3;999993^2=..........9;999993^3=.............7.Và cuoi của chúng cứ lần lượt theo những số:1;3;9;7.Giờ ta lấy 1999:4=499 du 3
=>Chữ số tận cùng của 999993^1999=7 n
555557^0=1;555557^1=.........7;555557^2=............9;555557^3=............3.Và cuối của chúng cứ lần lượt theo những số:1;7;9;3.Giờ ta thấy 1997:4 du 1
=>Chữ số tận cùng của 555557^1997=7 m
Từ n và m ta có thể chứng minh rằng:
999993^1999-555557^1997 .Chia hết cho 5
Bài của tớ đứng đó nhưng hơi dài dòng 1 tí.Nếu bạn tìm được người giỏi hơn thì bảo hộ làm gon đi nhé
cho mình
A=9999931999-5555571997
A=9999931996.9999933-5555571996.555557
A=(9999934)499.......7-(5555574)499.555557
A=...........1499........7-..........1499.555557
A=...................1........7-..............1.555557
A=..........................7-....................7
A=....................0 chia hết cho 10(đpcm)
bài này ko khó
Ta có:999993^1999=(999993^1996)*999993^3
555557^1997=(555557^1996)*55555
sau đó tách cả hai cái ra
cuối cùng,nó có chữ số tận cùng là 0,chia hết cho 5
9999931993 có tận cùng là 7
5555571997 có tận cùng là 7
-> A có tận cùng là 0 -> a chia hết cho 5
ủng hộ mình nhé ☺
9999931999ta xet 31999
31999=31996.33=(34)499.27=81499.27
81499co chu so tan cung la 1 nen 81499.27 co chu so tan cung la 7
vay 9999931999co chu so tan cung la 7
5555571997 ta xet 71997
71997=71996.7=(74)499.7=2401499.72401
2401499co chu so tan cung la 1 nen 2401499.7 co chu so tan cung la 7
vay 5555571997 co chu so tan cung la 7
ta co 9999931999-5555571997co chu so tan cung la 0
suy ra A chia het cho 5
Ta có:A= 9999931999- 5555571997
= 9999931998 . 999993 - 5555571996 . 555557
= ( 9999932)999 . 999993- ( 555552)998 . 555557
= (....9)999 . 999993 - (....9)998 . 555557
= (....9) . 999993 - (....1) . 555557
= (...7) - (...7)
= (...0)
Chữ số tận cùng của A= 0
=> A chia hết cho 5 ( đpcm)
Chúc bạn học tốt nhoa...!
\(\)Ta có :
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993^1-555557^{1996}.555557^1\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\left(......9\right).999993-\left(....1\right).555557\)
\(A=\left(....7\right)-\left(...7\right)=\left(...0\right)\)
\(\Rightarrow\) Chữ số tận cùng của A là \(0\)
\(\Rightarrow A⋮5\)
~ Chúc bn học tốt ~
Ta có:
A=9999931999−5555571997A=9999931999−5555571997
A=9999931998.999993−5555571996.555557A=9999931998.999993−5555571996.555557
A=(9999932)999.999993−(5555572)998.555557A=(9999932)999.999993−(5555572)998.555557
A=(.....9)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯999.999993−(.....1)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.555557A=(.....9)¯999.999993−(.....1)¯.555557
A=(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯−(.....7)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....7)¯−(.....7)¯
A=(.....0)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯A=(.....0)¯
Vì A có tận cùng là 0
⇒A⋮5⇒A⋮5 (Đpcm)
Tôi giải hơi dài 1 tí , anh hãy cố gắng đọc:
a) 571999 ta xét 71999
Ta có: 71999 = (74)499.73 = 2041499. 343 Suy ra chữ số tận cùng bằng 3
Vậy số 571999 có chữ số tận cùng là : 3
b) 931999 ta xét 31999
Ta có: 31999 = (34)499. 33 = 81499.27
Suy ra chữ số tận cùng bằng 7
2. Cho A = 9999931999 - 5555571997 . chứng minh rằng A chia hết cho 5
Để chứng minh A chia hết cho 5 , ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của từng số hạng.
Theo câu 1b ta có: 9999931999 có chữ số tận cùng là 7
Tương tự câu 1a ta có: (74)499.7 =2041499.7 có chữ số tận cùng là 7
Vậy A có chữ số tận cùng là 0, do đó A chia hết cho 5.
Nguồn : Câu hỏi tương tự