Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5+5^2+5^3+5^4+...+5^{60}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{59}.\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{59}.6\)
\(=6.\left(5+5^3+...+5^{59}\right)\)chia hết cho 6
=> A chia hết cho 6
http://olm.vn/hoi-dap/question/666093.html
Bạn có thể giải mình bài đó không
a) Gọi A = 4 + 4 ^1 + 4 ^2 + ... + 4^60
Vì 4 chia hết cho 2; 4^2 chia hết cho 2 và nói chung là tất cả các số hạng đều là số chẵn
=> A chia hết cho 2
\(A=4\cdot\left(4+1\right)+4^3\cdot\left(1+4\right)+...+4^{59}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+5^{59}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\left(đpcm\right)\)
b)
\(B=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^9\cdot\left(1+5\right)\)
\(B=5\cdot6+5^3\cdot6+...+5^9\cdot6\)
\(B=6\cdot\left(5+5^3+...+5^9\right)⋮6\left(đpcm\right)\)
D=5^1+5^2+5^3+...+5^2010
=(5^1+5^2)+(5^3+5^4)+...+(5^2009+5^2010)
=5(1+5)+5^3(1+5)+...+5^2009(1+5)
=(1+5)(5+5^3+...+5^2009)
=6(5+5^3+...+5^2009) chia hết cho 6
b) tự làm cách cũng tương tự vậy
a) Đặt A= \(1+2+2^2+...+2^7=\left(1+2\right)\left(2^2+2^3\right)+...+\left(2^6+2^7\right)\)
\(=3+2^2\left(1+2\right)+...+2^6\left(1+2\right)\)
\(=3\left(1+2^2+...+2^6\right)\)
Vậy A chia hết ho 3
Câu b,c tương tư
a) 942^60 - 351^37 chia hết cho 5
2^1 có c/số tận củng là 2
2^2 có c/số tận củng là 4
2^3 có c/số tận củng là 8
2^4 có c/số tận củng là 6
2^5 có c/số tận củng là 2
................................
=>Các số có c/số tận cung là 2 có lũy thừa được kết quả có c/số tân cung lặp lại theo quy luật 1 nhóm 4 c/số sau (2;4;8;6)
ta có 60: 4=15(nhóm) => 942^60 có c/số tận cùng là c/số tận cùng của nhóm thứ 15 và là c/số 6
mặt khác 351^37 có kết quả có c/số tận cùng là 1 (vì 351 có c/số tận cung =1)
=>kết quả phép trừ 942^60 - 351^37 có c/số tận cùng là: 6-1=5
=>942^60 - 351^37 chia hết cho 5
b/ giải thích tương tự câu a ta có
99^5 có c/số tận cùng là: 9
98^4 có c/số tận cung là: 6
97^3 có c/số tận cùng là: 3
96^2 có c/số tận cùng là: 6
=> 99^5 - 98^4 + 97^3 - 96^2 có c/số tận cùng là: 9-6+3-6=0
vậy 99^5 - 98^4 + 97^3 - 96^2 chia hết cho 2 và 5 vì có c/số tận cung là 0 (dâu hiệu chia hết cho 2 và 5)
\(A=5+5^2+...+5^{60}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{59}+5^{60}\right)\)
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{59}\left(1+5\right)\)
\(A=5.6+5^3.6+...+5^{59}.6\)
\(A=6\left(5+5^3+...+5^{59}\right)\)
Có : \(6⋮6\)
\(\Rightarrow A=6\left(5+5^3+...+5^{59}\right)⋮6\)
\(\Rightarrow A⋮6\)
nhân bạn ơi