Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A_1=1+2+3+...+167\)
\(A_1=\left(167+1\right).167:2\)
\(A_1=168.167:2\)
\(A_1=28056:2\)
\(A_1=14028\)
\(A_5=4^3+4^4+4^5+...+4^{100}\)
\(4\text{A}_5=4^4+4^5+4^6+...+4^{101}\)
\(4\text{A}_5-A_5=\left(4^4+4^5+4^6+...+4^{101}\right)-\left(4^3+4^4+4^5+...+4^{100}\right)\)
\(A_5=4^{101}-4^3\)
A=1+2+3+...+167
A có: (167-1)+1=167(số hạng)
A=(167+1)*167/2=14028
B=43+44+45+...+4100
4B=44+45+46+...+4101
4B+43=43+44+45+...+4100+4101=B+4101
4B-B=4101-43
3B=4101-43
B=(4101-43)/3
a ) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b ) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)
\(\Rightarrow2B=3^{2011}-1\)
\(\Rightarrow B=\frac{3^{2011}-1}{2}\)
Chúc bạn học tốt !!!
B = (1 + 2 + 3 + ....... + 100)2
B = (100.101 : 2 )2
B = 5050 2 = 25502500
a) 13 + 23 + 33 + 43 + 53
= 1 + 8 + 27 + 64 + 125
= 9 + 27 + 64 + 125
= 36 + 64 + 125
= 100 + 125
= 225
<=> 225 = 152
b) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 9 + 27 + 64 + 125 + 216
= 36 + 64 + 125 + 216
= 100 + 125 + 216
= 225 + 216
= 441
<=> 441 = 212
A = 1 + 3 + 32 + 33 + 34 +......+ 3100
=> 3A = 3 + 32 + 33 + 34 + 35 + ...... + 3101
=> 3A - A = (3 + 32 + 33 + 34 + 35 + ...... + 3101) - (1 + 3 + 32 + 33 + 34 +......+ 3100)
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
A=1+3+32+33+...+320
A=(1+3)+(32+33)+(34+35)+...+(319+320)
A= 4+32(1+3)+34(1+3)+......+319(1+3)
A=4+32.4+34.4+....+319.4
A=4.(32+34+...+319) =>A chia hết cho 4
0+(
3A= 32+33+ .... + 3101
-
A=3+32+ ... + 3100
------------------------------
2A=3101-1
A=(3101-1)/2
học tốt nha man
\(A=3+3^2+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=\left(3^2+3^3+....+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\frac{3^{101}-3}{2}\)