K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: x<-3

=>-2x-(-x-3)-1=0

=>-2x-1+x+3=0

=>-x+2=0

=>x=2(loại)

TH2: -3<=x<0

=>-2x-x-3-1=0

=>-3x-4=0

=>x=-4/3(nhận)

TH3: x>=0

=>2x-x-3-1=0

=>x-4=0

=>x=4

b: TH1: x<-1

=>-x-1-2(1-x)=x

=>-x-1-2+2x=x

=>x-3=x(loại)

TH2: -1<=x<1

=>x+1-2(1-x)=x

=>1-2(1-x)=0

=>2(1-x)=1

=>1-x=1/2

=>x=1/2(nhận)

TH3: x>=1

=>x+1-2x+2=x

=>-x+3-x=0

=>3-2x=0

=>x=3/2(nhận)

c: TH1: x<-3/2

=>-2x-3+x+x-1=0

=>-4=0(loại)

TH2: -3/2<=x<0

=>2x+3+x+x-1=0

=>4x+2=0

=>x=-1/2(nhận)

TH3: x>=0

=>2x+3-x+x-1=0

=>2x+2=0

=>x=-1(loại)

16 tháng 2 2023

ình nghĩ bạn cần ghi rõ điều kiện ra hơn í nhưng vậy cũng đc rồi cảm ơn bn

5 tháng 9 2020

a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)

\(\Leftrightarrow-x^3+5x^2-5x=0\)

\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)

5 tháng 9 2020

a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)

\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)

\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)

=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)

b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)

\(\Leftrightarrow-12=0\left(vn\right)\)

c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)

\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)

\(\Leftrightarrow2x=15\)

\(\Rightarrow x=\frac{15}{2}\)

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

8 tháng 2 2018

2)  \(x^3-6x^2+11x-6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-3x^2+9x+2x-6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x-1\right)=0\)

bn giải tiếp nha

3)   \(x^3-4x^2+x+6=0\)

\(\Leftrightarrow\)\(x^3-3x^2-x^2+3x-2x+6=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x^2-x-2\right)=0\)

\(\Leftrightarrow\)\(\left(x-3\right)\left(x-2\right)\left(x+1\right)=0\)

lm tiếp nha

4)  \(x^3-3x^2+4=0\)

\(\Leftrightarrow\)\(x^3+x^2-4x^2-4x+4x+4=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\)\( \left(x+1\right)\left(x-2\right)^2=0\)

lm tiếp nha

7 tháng 2 2018

Mk làm mẫu 1 bài cho nha !

1. <=> (x^3-x^2)+(5x^2-5x)+(6x-6) = 0

<=> (x-1).(x^2+5x+6) = 0

<=> (x-1).[(x^2+2x)+(3x+6)] = 0

<=> (x-1).(x+2).(x+3) = 0

<=> x-1=0 hoặc x+2=0 hoặc x+3=0

<=> x=1 hoặc x=-2 hoặc x=-3

Vậy ..............

Tk mk nha

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với

19 tháng 4 2020

Giúp luôn Đức Hải Nguyễn câu e:

e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0

\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0

\(\Leftrightarrow\) (2x + 1)2 = 0

\(\Leftrightarrow\) 2x + 1 = 0

\(\Leftrightarrow\) x = \(\frac{-1}{2}\)

Vậy S = {\(\frac{-1}{2}\)}

Chúc bn học tốt!!

19 tháng 4 2020

a) (x - 3)(5 - 2x) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)

b) (x + 5)(x - 1) - 2x(x - 1) = 0

<=> (x - 1)(x + 5 - 2x) = 0

<=> (x - 1)(5 - x) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0

<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0

<=> (x - 2)(5x + 3 - 3x - 15) = 0

<=> (x - 2)(2x - 12) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

d) (x - 6)(x + 1) - 2(x + 1) = 0

<=> (x + 1)(x - 6 - 2) = 0

<=> (x + 1)(x - 8) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

Câu e thì để mình nghĩ đã :)

#Học tốt!

20 tháng 2 2020

chúc bạn học giỏi

a: \(\Leftrightarrow x^2+6x+9+x^2-4-2x-2=7\)

\(\Leftrightarrow2x^2+4x-4=0\)

\(\Leftrightarrow x^2+2x-2=0\)

\(\Leftrightarrow x^2+2x+1-3=0\)

\(\Leftrightarrow\left(x+1\right)^2=3\)

hay \(x\in\left\{-\sqrt{3}-1;\sqrt{3}-1\right\}\)

b: \(\Leftrightarrow2x^2-x-\left(2x^2+3x-4x-6\right)=0\)

\(\Leftrightarrow2x^2-x-2x^2+x+6=0\)

=>6=0(vô lý)

c: \(\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=0\)

=>x=-2 hoặc x=2

đ: \(\Rightarrow2x^2-2x-5x+5=0\)

=>(x-1)(2x-5)=0

=>x=1 hoặc x=5/2

12 tháng 8 2019

a) x(x-1) - (x+1)(x+2) = 0

    x\(^2\)- x -x\(^{^2}\)-2x +x+2=0

     -2x+2=0

      -2x=0+2

       -2x=2

         x=-1

Vậy x bằng -1

14 tháng 11 2017

1) Tìm x và y biết

a) (2x+1)2 + y2 = 0

Ta có : \(\left(2x+1\right)^2\ge0;y^2\ge0\)

\(\Rightarrow\left(2x+1\right)^2+y^2\ge0\)

Để \(\left(2x+1\right)^2+y^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+1\right)^2=0\\y^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=0\end{matrix}\right.\)

b) x2 + 2x + 1 + (y-1)2 = 0

\(\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2=0\)

Lập luận tương tự câu a ,ta có :

\(\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

c) x2 - 2x + y2 + 4y + 5 = 0

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Lập luận tương tự 2 câu trên

\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

2 tháng 10 2020

Sorry mình nhầm câu a

a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0

b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28

d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0

Giải:

a) (2x - 1)2 + (x + 3)2 - 5(x + 7)(x - 7) = 0

\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5(x2 - 49) = 0

\(\Leftrightarrow\) 4x2 - 4x + 1 + x2 + 6x + 9 - 5x2 + 245 = 0

\(\Leftrightarrow\) 2x + 255 = 0

\(\Leftrightarrow\) 2x = - 255

\(\Leftrightarrow\) x = - 255 : 2

\(\Leftrightarrow\) x = \(-\frac{255}{2}\)

Vậy x = \(-\frac{255}{2}\)

b) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

\(\Leftrightarrow\) x3 + 8 - x3 - 2x = 15

\(\Leftrightarrow\) 8 - 2x = 15

\(\Leftrightarrow\) 2x = 8 - 1

\(\Leftrightarrow\) 2x = - 7

\(\Leftrightarrow\) x = - 7 : 2

\(\Leftrightarrow\) x = \(-\frac{7}{2}\)

Vậy x = \(-\frac{7}{2}\)

c) (x + 3)3 - x(3x + 1)2 + (2x - 1)(4x2 - 2x + 1) = 28

\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 - 1 = 28

\(\Leftrightarrow\) x3 + 6x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 - 1 = 28

\(\Leftrightarrow\) 26x + 26 = 28

\(\Leftrightarrow\) 26x = 28 - 26

\(\Leftrightarrow\) 26x = 2

\(\Leftrightarrow\) x = 2 : 26

\(\Leftrightarrow\) x = \(\frac{1}{13}\)

Vậy x = \(\frac{1}{13}\)

d) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0

\(\Leftrightarrow\) x6 - 2x2 + 1 - (x6 - 1) = 0

\(\Leftrightarrow\) x6 - 2x2 + 1 - x6 + 1 = 0

\(\Leftrightarrow\) -2x2 + 2 = 0

\(\Leftrightarrow\) -2x2 = - 2

\(\Leftrightarrow\) x2 = - 2 : (- 2)

\(\Leftrightarrow\) x2 = 1

\(\Leftrightarrow\) x = 1 hoặc x = - 1

Vậy x \(\in\) {1; - 1}

2 tháng 10 2020

mình giải lại thì ra x=127

15 tháng 8 2018

a) \(36x^2-49=0\)

\(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)

\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)

\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)

16 tháng 8 2018

Bài 2

a) 36x2-49=0

⇔ (6x)2-49=0

⇔(6x-7).(6x+7)=0

TH1: 6x-7=0 TH2: 6x+7=0

⇔6x=7 ⇔6x=-7

⇔x=7/6 ⇔x=-7/6