K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

a)\(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)

\(A=1-\frac{1}{2^{50}}<1\)

Vậy \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}<1\)

b)\(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3B-B=2B=1-\frac{1}{3^{100}}\)

\(B=\frac{1-\frac{1}{3^{100}}}{2}\)

\(1-\frac{1}{3^{100}}<1\)nên\(\frac{1-\frac{1}{3^{100}}}{2}<\frac{1}{2}\)

Vậy \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}<\frac{1}{2}\)

c) \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\)

\(4C=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{998}}+\frac{1}{4^{999}}\)

\(4C-C=3C=1-\frac{1}{4^{1000}}\)

\(C=\frac{1-\frac{1}{4^{1000}}}{3}\)

\(1-\frac{1}{4^{1000}}<1\)nên\(\frac{1-\frac{1}{4^{1000}}}{3}<\frac{1}{3}\) 

Vậy \(C=\frac{1}{4^1}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}<\frac{1}{3}\)

 

22 tháng 12 2016

Bạn Detective_conan giải đúng đấy!

15 tháng 9 2015

b) Đặt \(C=\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{1000}}\)

\(\frac{1}{4}A=\frac{1}{4^2}+\frac{1}{4^3}+.......+\frac{1}{4^{1001}}\)

\(A-\frac{1}{4}A=\left(\frac{1}{4^2}-\frac{1}{4^2}\right)+\left(\frac{1}{4^3}-\frac{1}{4^3}\right)+.....+\frac{1}{4}-\frac{1}{4^{1001}}\)

\(\frac{3}{4}A=\frac{1}{4}-\frac{1}{4^{1001}}\)

Đến đây Đặt \(\frac{3}{4}B=\frac{1}{4}\)

Ta có: \(\frac{3}{4}A<\frac{3}{4}B\) \(\rightarrow A

15 tháng 9 2015

À thì ra bạn học cùng trường với Nguyễn Âu Hồng Sơn 

19 tháng 3 2022

i giúp em vớiiiiii

 

\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)

\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)

\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)

\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)

\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)

\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)

mà \(3< \dfrac{10}{3}\)

nên \(M< \dfrac{10}{3}\)

27 tháng 11 2016

Ta có :

\(C=\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+.....+\frac{1}{4^{1999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{3.4^{1000}}< \frac{1}{3}\)

=> C < 1 / 3

27 tháng 11 2016

Ta có:

\(C=\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{1000}}\)

\(\Rightarrow4C=1+\frac{1}{4}+...+\frac{1}{4^{999}}\)

\(\Rightarrow4C-C=\left(1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}\right)-\left(\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}\right)\)

\(\Rightarrow3C=1-\frac{1}{4^{1000}}\)

\(\Rightarrow C=\left(1-\frac{1}{4^{1000}}\right).\frac{1}{3}\)

\(\Rightarrow C=\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\frac{1}{3}>\frac{1}{3}-\frac{1}{4^{1000}.3}\)

\(\Rightarrow C< \frac{1}{3}\)

Vậy \(C< \frac{1}{3}\)

6 tháng 10 2018

a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)

b, Ta có :

\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)

c, Ta có :

\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)

6 tháng 10 2018

Mình làm rồi đó !!!!!Trần Thị Hương Lan

23 tháng 8 2023

a -35/50 = -7/10

b  510/2805 = 2/11

c  119/126

B2

-2/3= -8/12 , -1/4= -3/12

-8/12<-3/12 nên -2/3<-1/4

b 2/3  5/6

12/18 và 15/18

12/18<15/18

nên 14/21<60/72

23 tháng 8 2023

bài 1 :

a) = -7/10

b) = 510/2805 = 2/11

c) = 17/18