K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Có : 2A = 1 + 1/2 + 1/2^2 +.....+ 1/2^2015

A = 2A - A = (1+1/2+1/2^2+.....+1/2^2015)-(1/2+1/2^2+.....+1/2^2016)

   = 1 - 1/2^2016

Tk mk nha

26 tháng 1 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\right)\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2015}}-\frac{1}{2^{2016}}\)

\(A=1-\frac{1}{2^{2016}}\)

viết lại đề cho rõ phân số đi bn

15 tháng 2 2017

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)16 

2A=\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2017}\)

2A-A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+..+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)-\(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

A=\(\frac{1}{2017}-\frac{1}{2}\)

15 tháng 2 2017

A = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

2A = \(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\)

2A - A = \(\left(1+\frac{1}{2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\right)\)

A = \(1-\frac{1}{2^{2016}}\)

11 tháng 2 2018

        \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\)

\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(\Rightarrow\)\(A=1-\frac{1}{2^{2016}}\)

9 tháng 5 2019

\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)

15 tháng 1 2016

a / ( -14 ) . (-125) . 3 . ( -8 ) = - ( 125 . 8 . 14 . 3)

                                        = -( 1000 .42 )

                                        = -4200