\(\frac{1}{1x2}\)+\(\frac{5}{2x3}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2015

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=\left(1-\frac{1}{10}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)\)

\(=\left(\frac{10}{10}-\frac{1}{10}\right)+0+...+0=\frac{9}{10}\)

21 tháng 7 2015

...

= 1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/9-1/10

= 1/1-1/10

= 9/10

25 tháng 5 2018

a) \(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{5}-\frac{1}{10}\)

\(=\frac{1}{10}\)

b) \(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{998.1000}\)

\(=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{998}-\frac{1}{1000}\)

\(=\frac{1}{10}-\frac{1}{1000}\)

\(=\frac{99}{1000}\)

c) \(\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{69.90}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{89.90}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{89}-\frac{1}{90}\right)\)

\(=4.\left(1-\frac{1}{90}\right)\)

\(=4.\frac{89}{90}\)

\(=\frac{178}{45}\)

_Chúc bạn học tốt_

25 tháng 5 2018

a, \(=\frac{1}{10}\)

26 tháng 7 2017

\(S=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}\)

Áp dụng công thức : \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(S=1-\frac{1}{100}=\frac{99}{100}\)

26 tháng 7 2017

Dap an la 99/100.nho k cho minh.bai giai se gui sau

22 tháng 6 2017

Ta có:

\(A=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+....+\left(1-\frac{1}{2016.2017}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\right)\)

\(=2016-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=2016-\left(1-\frac{1}{2017}\right)\)

\(=2016-\frac{2016}{2017}=\frac{4064256}{2017}\)

Vậy giá trị biểu thức là \(\frac{4064256}{2017}\)

27 tháng 4 2018

=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/98-1/99+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

27 tháng 4 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{99}{100}\)

~~~
#Sunrise

2 tháng 4 2020

\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\)

\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}+\frac{6-5}{5\times6}\)

\(=\frac{3}{2\times3}-\frac{2}{2\times3}+\frac{4}{3\times4}-\frac{3}{3\times4}+\frac{5}{4\times5}-\frac{4}{4\times5}+\frac{6}{5\times6}-\frac{5}{5\times6}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{2}-\frac{1}{6}\)

\(=\frac{1}{3}\)

13 tháng 7 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{y\times\left(y+1\right)}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{y}-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow1-\frac{1}{y+1}=\frac{996}{997}\)

\(\Leftrightarrow\frac{1}{y+1}=1-\frac{996}{997}=\frac{1}{997}\)

\(\Leftrightarrow y+1=997\Leftrightarrow y=996\)

Vậy y = 996

13 tháng 7 2018

1/1×2 + 1/2×3 + 1/3×4 + ... + 1/ y x (y+1) =996/997

1-1/2+1/2-1/3+1/3-1/4+...+1/y - 1/y+1 =996/997

1-1/y+1=996/997

1/ y+1 =1-996/997

1/y+1 = 997/997-996/997

1/y+1=1/997

=> y+1 =997

y=997-1

y=996

Vậy y = 996

22 tháng 7 2018

S=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2009}\)-\(\frac{1}{2010}\)

S=1-\(\frac{1}{2010}\)

S=\(\frac{2009}{2010}\)

k nha bn

22 tháng 7 2018

\(S=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2008\times2009}+\frac{1}{2009\times2010}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}+\frac{1}{2009}-\frac{1}{2010}\)

\(=1-\frac{1}{2010}\)

\(=\frac{2009}{2010}\)

Vậy \(S=\frac{2009}{2010}\)

Học tốt #

10 tháng 2 2017

\(=1\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=1\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

10 tháng 2 2017

1/2-1/10=2/5

Chúc bạn may mắn@