Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
1.n—3 chia hết cho n—1
==> n—1–2 chia hết chi n—1
Vì n—1 chia hết cho n—1
Nên 2 chia hết cho n—1
==> n—1 € Ư(2)
n—1 € {1;—1;2;—2}
Ta có:
TH1: n—1=1
n=1+1
n=2
TH2: n—1=—1
n=—1+1
n=0
TH3: n—1=2
n=2+1
n=3
TH 4: n—1=—2
n=—2+1
n=—1
Vậy n€{2;0;3;—1}
Nếu bạn chưa học số âm thì không cần viết đâu
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
6n-5 chia hết cho 2n+3
=> 6n+9-14 chia hết cho 2n+3
=> 3(2n+3)-14 chia hết cho 2n+3
=> 14 chia hết cho 2n+3
=> 2n+3 là ước của 14
Mà 2n+3 là số nguyên lẻ
=> 2n+3 thuộc {-1;1}
=> n thuộc {-2;-1}
Ta có : ( 3x - 1 ) chia hết ( 2x + 1 )
<=> 2.( 3x - 1 ) chia hết 2x + 1
<=> 6x - 2 chia hết 2x + 1
<=> 6x + 3 - 5 chia hết 2x + 1
<=> 3 . ( 2x + 1 ) - 5 chia hết 2x + 1
<=> 5 chia hết 2x + 1
Nên : 2x + 1 thuộc Ư ( 5 )
suy ra 2x + 1 thuộc { 1 , -1 , 5 , -5 }
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru