Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.3^2-2^n.2^2+3^n-2^n\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
Ta có 3n+2-2n+2+3n-2n
= 3n.9-2n.4+3n-2n
= 3n(9+1)-2n(4+1)
= 3n.10-2n.5=3n.10-2n-1.10
Nhận thấy 3n.10 chia hết cho 10 với mọi số nguyên dương n; 2n-1.10 chia hết cho 10 với mọi số nguyên dương n
=> 3n+2-2n+2+3n-2n chia hết cho 10 với mọi số nguyên dương n
x/4=6/8 3x+1/3=5/2 x-3-1/7=0
x.8=4.6=24 3x=5/2-1/3=13/6 x-3=0+1/7=1/7
x=24:8=3 x=13/6:3=13/18 x=1/7+3=22/7
\(\frac{x}{4}=\frac{6}{8}\Rightarrow x\times8=4.6\Rightarrow x=\frac{4.6}{8}3\)
Vậy x=3
3x\(+\frac{1}{3}=\frac{5}{2}\)
3x =\(\frac{5}{2}-\frac{1}{3}\)
3x =\(\frac{13}{6}\)
x =\(\frac{13}{6}:3=\frac{13}{6}.\frac{1}{3}\)
x =\(\frac{13}{18}\)
x-3-\(\frac{1}{7}=0\)
x-3 =0+\(\frac{1}{7}\)
x-3 =\(\frac{1}{7}\)
x =\(\frac{1}{7}+3\)
x =3\(\frac{1}{7}\)
Ta có:
A=(\(2+2^2+2^3+2^4\))+....+(\(2^{21}+2^{22}+2^{23}+2^{24}\))
A=2(1+2+\(2^2+2^3\))+....+\(2^{21}\)(\(1+2+2^2+2^3\))
A=2.15+....+\(2^{21}.15\)
A=15(2+\(2^5+...+2^{21}\))
nên A chia hết cho 15.
1.Ta có A= 710 +79 - 78
A= 78 .(72 +7 -1)
A=78 .55
=> A chia hết cho 11( vì có thừa số 55 chia hết cho 11)
b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại
c) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n.9-2^n.4+3^n.1-2^n.1\)
\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)
\(=3^n.10-2^{n-1}.10\)
\(=10.\left(3^n.2^{n-1}\right)\)
a) Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=14+...+2^{21}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{21}.14\)
\(\Rightarrow A=\left(1+...+2^{21}\right).14⋮14\)( đpcm )
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3\right)+...+2^{21}\left(1+2+2^2+2^3\right)\)
\(\Rightarrow A=2.15+...+2^{21}.15\)
\(\Rightarrow A=15\left(2+...+2^{21}\right)⋮15\left(đpcm\right)\)
b) Mk sửa đề chút là A chia 16 dư 15 nhé
Ta có:
\(A=2+2^2+2^3+...+2^{24}\)
\(\Rightarrow A=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{20}+2^{21}+2^{22}+2^{23}+2^{24}\right)\)
\(\Rightarrow A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{20}\left(1+2+2^2+2^3+2^4\right)\)
\(\Rightarrow A=2.31+...+2^{20}.31\)
\(\Rightarrow A=\left(2+2^{20}\right).31\)
Vì 31 chia 16 dư 15 nên suy ra đpcm
16
8;9;14;16