Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.\(99^{20}\)khi từ \(99^2\),hàng đơn vị là 9 x 9 = 81,cứ thế đến \(99^{20}\);quy luật 1;9;1;9;....Còn \(11^9\)theo quy luật luôn luôn hàng đơn vị là 1.Vậy trừ hàng đơn vị,thấy ngay 2TH là 9 - 1 và 1 - 1 ra số chẵn.
\(\Rightarrow99^{20}-11^9⋮2\)
2.\(1024^8=\left(2^{10}\right)^8=2^{80}\Rightarrow2^{100}>1024^8\)(a)
\(620^{10}=\left(5^4-5\right)^{10}=\left(5^4\right)^9=5^{36}\Rightarrow5^{40}>620^{10}\)(b)
a) S = 5 + 52 + 53 + ... + 5100
=> S = ( 5 + 52 ) + ( 53 + 54 ) + ... + ( 599 + 5100 )
=> S = 5( 1 + 5 ) + 53( 1 + 5 ) + ... + 599( 1 + 5 )
=> S = 5 . 6 + 53 . 6 + ... + 599 . 6
=> S = ( 5 + 53 + ... + 599 ) . 6 chia hết cho 6
=> S chia hết cho 6
b) S1 = 2 + 22 + 23 + ... + 2100
=> S1 = ( 2 + 22 + 23 + 24 + 25 ) + ... + ( 296 + 297 + 298 + 299 + 2100 )
=> S1 = 2( 1 + 2 + 22 + 23 + 24 ) + ... +296( 1 + 2 + 22 + 23 + 24 )
=> S1 = 2 . 31 + ... + 296 . 31
=> S1 = ( 2 + ... + 296 ) . 31 chia hết cho 31
=> S1 chia hết cho 31
c) S2 = 165 + 215
=> S2 = ( 24 )5 + 215
=> S2 = 220 + 215
=> S2 = 220( 1 + 25 )
=> S2 = 220 . 33 chia hết cho 33
=> S2 chia hết cho 33
4= 30+31(làm ra nháp)
S= 3+32+33+...+3100
S= (3+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^99+3^100)
S=(3x1+3x3)+(3^3x1+3^3x3)+(3^5x1+3^5x3)+...+(3^99x1+3^99x3)
S=3x(1+3)+3^3x(1+3)+3^5x(1+4)+...+3^99x(1+3)
S=3x4+3^3x4+3^5x4+...+3^99x4
S=4x(3+3^3+3^5+...+3^99)
=> S chia hết cho 4.
Đặt Tên Chi
Tìm kiếm
Báo cáo
Đánh dấu
24 tháng 12 2015 lúc 20:28
Cho S=3+32+33+........+3100
a, Chứng minh rằng S chia hết cho 4.
b, Chứng minh rằng 2S+3 là 1 lũy thừa của 3
Toán lớp 6
Giải:
A = 2 + 22 + 23 +...+ 2100
<=> A = ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
<=> A = 6+ 22 ( 2+22 )+ ...+ 298 (2+22 )
<=> A = 6+ 22 .6+ ...+ 298 .6
<=> A = 6.(22+...+298 ) chia hết cho 3
Câu b tương tự
a) S= 2 + 22 + 23 +...+ 2100
S= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)
S=6+ 22.6+ ...+ 298.6
S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)
a) \(1024^9=\left(2^{10}\right)^9=2^{10.9}=2^{90}\)
MÀ \(2^{90}<2^{100}\Rightarrow2^{100}>1024^9\)
b) \(S=2+2^2+2^3+....+2^{100}\)
\(S=\left(2+2^2+2^3+2^4\right)+.....+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(S=2.15+2^5.15+.....+2^{97}.15\)
\(S=5.3.\left(2+2^5+....+2^{100}\right)\)
Vậy S chia hết cho 5