Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có dãy chia hết cho 2 : 2,4,6,...,100
Có số ' số chia hết cho 2 là :
(100-2):2+1=50 số
Ta có dãy chia hết cho 5 : 5,10,15,...,100
Có số ' số chia hết cho 5 là :
(100-5):5+1=20 số
2.
- n là số lẻ nên suy ra n+7 là chẵn
=> (n+4)(n+7) là số chẵn
- n là số chẵn suy ra n+4 là chẵn
=> (n+4)(n+7) là số chẵn
Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .
=> đpcm
aaaaa=10000a+1000a+100a+10a+a=a(10000+1000+100+10=111111a=15873.7.a
=>aaaaaa chia hết cho 7
a) aaaaaa = a . 111111 = a . 7 . 15873 chia hết cho 7
b) a = 3
c) Ta có
( n + 3 ) ( n + 6 ) = ( n + 3 ) n + ( n + 3 ) 6
= n2 + 3n + 6n + 18
= n2 + 9n + 18
= n2 + 9( n + 2 )
Ta xét
Nếu n = 2k thì
n2 là số chẵn => chia hết cho 2
n + 2 là số chẵn => 9( n + 2 ) chia hết cho 2
=> n2 + 9( n + 2 ) chia hết cho 2 ( 1 )
Nếu n = 2k + 1 thì
n2 là số lẻ
n + 2 là số lẻ => 9( n + 2 ) là số lẻ
Do lẻ + lẻ = chẵn nên n2 + 9( n + 2 ) chia hết cho 2 (2)
Từ (1) và (2) suy ra với mọi n thì ( n + 3 ) ( n + 6 ) chia hết cho 2
1a)
U(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
=> n + 1 \(\in\) {-15; -5; -3; -1; 1; 3; 5; 15}
=> n \(\in\) {-16; -6; -4; -2; 0; 2; 4; 14}
(Chú ý nếu chưa học số âm thì bỏ các số âm đi nhé)
1b) 12 / (n+5) là số tự nhiên thì n + 1 \(\in\) Ư(12)
Ư(12) = {1 ; 2; 3; 4; 6; 12}
=> n + 5 \(\in\) {1 ; 2; 3; 4; 6; 12}
=> n \(\in\) { 6 - 5; 12 - 5}
n \(\in\) { 1; 7}
2) (n + 3)(n + 6) xét 2 trường hợp của n
n chẵn => n + 6 chẵn => tích trên là số chẵn và chia hết cho 2
n lẻ => n + 3 chẵn => tích trên cũng là số chẵn và chia hết cho 2
Vậy trong mọi trường hợp tích trên đều là số chẵn và chia hết cho 2
Bài 1:
a) Để 35 - 12n chia hết cho n thì 35 phải chia hết cho n
=> n \(\in\) Ư(35) = {1;5;7;35}
Vậy n \(\in\){1;5;7;35}
b) 16 - 3n = 28 - 12 - 3n = -3(n + 4) + 28
Để 16 - 3n chia hết cho n + 4 thì 28 phải chia hết cho n + 4
=> n + 4 \(\in\) Ư(28) = {1;2;4;7;14;28}
Nếu n + 4 = 1 => n = -3 (loại)
Nếu n + 4 = 2 => n = -2 (loại)
Nếu n + 4 = 4 => n = 0
Nếu n + 4 = 7 => n = 3
Nếu n + 4 = 14 => n = 10
Nếu n + 4 = 28 => n = 24
Vậy n \(\in\) {0;3;10;24}
Đặt n2+3n+5 = (*)
Giả sử n=1 => (*) <=> 12+3.1+5 không chia hết cho 121 ( đúng )
Vậy với n=1 đúng
Giả sử (*) đúng với n=k
=> (*) <=> k2+3k+5
Ta cần c/m (*) đúng với n = k+1
Thật vậy với n= k+1
=> (*) <=> (k+1)2+3(k+1)+5
tự viết tiếp
a;\(aaa=111\cdot a\)
\(\Rightarrow aaa=3\cdot37\cdot a\)
\(\Rightarrow aaa⋮37\left(3a\inℕ\right)\)
b;\(a\ge b;ab-ba=10a+b-10b-a\)
\(\Rightarrow ab-ba=9a-9b\)
\(\Rightarrow ab-ba=9\left(a-b\right)\)
\(\Rightarrow ab-ba⋮9\left(a\ge b\Rightarrow a-b\ge0\right)\)