K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB=MC=CB/2

\(\widehat{KAB}+\widehat{BAC}+\widehat{CAI}=180^0\)

=>\(\widehat{CAI}+90^0+45^0=180^0\)

=>\(\widehat{CAI}=45^0\)

Xét ΔKBA vuông tại K có \(\widehat{KAB}=45^0\)

nên ΔKAB vuông cân tại K

=>KA=KB

Xét ΔIAC vuông tại I có \(\widehat{IAC}=45^0\)

nên ΔIAC vuông cân tại I

=>IA=IC

Ta có: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: KA=KB

=>K nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MK là đường trung trực của AB

Ta có: MA=MC

=>M nằm trên đường trung trực của AC(3)

ta có: IA=IC

=>I nằm trên đường trung trực của AC(4)

Từ (3),(4) suy ra MI là đường trung trực của AC

b: Gọi H là giao điểm của MK với AB, F là giao điểm của MI với AC

MK là đường trung trực của AB

mà H là giao của MK với AB nên MK\(\perp\)AB tại H

MI là đường trung trực của AC

mà F là giao của MI với AC nên MI\(\perp\)AC tại F

Xét tứ giác AHMF có

\(\widehat{AHM}=\widehat{AFM}=\widehat{HAF}=90^0\)

nên AHMF là hình chữ nhật

=>\(\widehat{FMH}=90^0\)

=>\(\widehat{IMK}=90^0\)

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

10 tháng 12 2016

a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)

b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)

10 tháng 12 2016

b) Có: BAP + PAC = 90o

t/g BPA vuông tại P có: ABP + BAP = 90o

Suy ra PAC = ABP

Xét t/g BPA vuông tại P và t/g AQC vuông tại Q có:

AB = AC (gt)

ABP = CAQ (cmt)

Do đó, t/g BPA = t/g AQC ( cạnh huyền - góc nhọn)

=> AP = QC (2 cạnh tương ứng)

và BP = AQ (2 cạnh tương ứng)

= AP + PQ = QC + PQ

=> PQ = BP - QC (đpcm)

25 tháng 7 2017

k mik nha bn

a) Vì ^HAB + ^HAC = 90 
^HAB + ^HBA = 90 (1) 
=> ^^HAC = ^HBA 
Ta có: ^CAy + ^BAx = 180 - 90 = 90 
mà ^BAx = ^BAH 
=> ^HAB + ^CAy = 90 (2) 
từ (1) và (2) => ^HBA = ^CAy 
<=> ^HAC = ^CAy => Ac là tia phân giác ^HAy 
b) xét tam giác AHB = ADB ( cạnh huyền- góc nhọn) 
=> BD = HB và AH = AD (3) 

Xét tam giác ACE = ACH ( cạnh huyền-góc nhọn) 
=> CE = CH và AH = AE (4) 
=> BD + CE = BH + CH =BC 
Từ (3) và (4) => AE = AD 
=> A là trung điểm DE 
c) Xét tam giác EHD có AH là đường trung tuyến ứng với một cạnh 
mà AH = AE =BC/2 
=> tam giác EHD vuông tại H 
=> HD vuông góc HE

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm a) Chứng tỏ tam giác ABC vuông b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC c) BH cắt AG tại G là trọng tâm tam giác ABC Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE a) Chứng minh CD = BE và CD vuông góc với BE b) Kẻ đường thẳng đi qua A vuông với BC...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB =6cm , AC = 8cm , BC = 10cm 

a) Chứng tỏ tam giác ABC vuông 

b) Gọi M là trung điểm BC . Kẻ MK vuông AC trên tia đối tia MH lấy K sao cho MK = MH chứng minh BK // AC 

c) BH cắt AG tại G là trọng tâm tam giác ABC 

Bài 2 : Cho tam giác ABC ở phía ngoài tam giác đó vẽ các tam giác vuông cân tại A là ACD và ACE 

a) Chứng minh CD = BE và CD vuông góc với BE 

b) Kẻ đường thẳng đi qua A vuông với BC tại H . Chứng minh AH đi qua đường thẳng DE . Lấy điểm K nằm trong tam giác ABD sao cho  góc ABH = 30 độ , AB = BK . Chứng minh chúng bằng nhau

Bài 3 : Cho tam giác ABC vuông ở C có góc A = 60 độ . Tia p/g của góc BAC cắt BC ở E , kẻ EK vuông góc với AB ( K thuộc AB ) . Kẻ BD vuông góc với AE ( D thuộc AE)

b) Chứng minh tam giác ACE = tam giác AKE và AE vuôngg góc với CK 

c) chứng minh EB > AC , 3 đường thẳng AC , BD ,, KE cùng đi qua 1 điểm 

 

2
28 tháng 6 2020

a) xét \(\Delta ABC\)

\(BC^2=10^2=100\)

\(AB^2+AC^2=6^2+8^2=36+64=100\)

VÌ \(100=100\)

\(\Rightarrow BC^2=AB^2+AC^2\)

VẬY \(\Delta ABC\) VUÔNG TẠI A

28 tháng 6 2020

trong tam giác ABC ta có :

     AB2=62=36

     AC2=82=64

    BC2=102=100

ta thấy : 100=36+64 => BC2=AC2=AB2( định lý pytago đảo )

=> tam giác ABC vuông tại A 

CHÚC BẠN HỌC TỐT !!!

15 tháng 2 2016

moi hok lop 6