Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1 - 2x < 7
=> -2x < 6
=> x < -3
=> x thuộc {-4; -5; -6; ...}
b, \(\left(x-1\right)\left(x-2\right)>0\)
th1 :
\(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x< 2\end{cases}\Rightarrow}x< 1\Rightarrow x\in\left\{0;-1;-2;...\right\}}\)
th2 :
\(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>2\end{cases}\Rightarrow}x>2\Rightarrow x\in\left\{3;4;5;...\right\}}\)
vậy_
c tương tự b
\(a.1-2x< 7\Leftrightarrow2x< 7+1=8\Leftrightarrow x< 8:2\Leftrightarrow x< 4\)
Vậy x < 4
\(b.\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0;x-2>0\\x-1< 0;x-2< 0\end{cases}}\)
\(TH1\Leftrightarrow\orbr{\begin{cases}x-1>0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0+1=1\\x>0+2=2\end{cases}\Rightarrow x>2}}\)
\(TH2\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 0+1=1\\x< 0+2=2\end{cases}\Rightarrow}}x< 2\)
Vậy \(x\ne2\)
a. \(1-2x< 7\)
mà: \(1-n\le1\)với mọi n
\(\Rightarrow2x=n\Rightarrow x=\frac{n}{2}\)với mọi n
b.để: (x-1).(x-2)>0
=> x-1>0hoặc x-2<0
=>x>1hoặc x<2
(mik chỉ làm 2 câu mẫu thôi, bạn cố gắng tự làm nha, rất vui được kết bạn với bạn)
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)
\(\Leftrightarrow-3x=-\frac{13}{4}\)
\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)
\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)
\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)
\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)
\(\Leftrightarrow x=-\frac{6}{11}\)
d,e,f Tương tự
Ta có: (2 - x)(4/5 - x) < 0
=> \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< \frac{4}{5}\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 2\\x>\frac{4}{5}\end{cases}}\)
=> \(\frac{4}{5}< x< 2\)
\(\left(2-x\right)\left(\frac{4}{5}-x\right)< 0\)
TH1 : \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}2>x\\\frac{4}{5}< x\end{cases}}}\)\(\Rightarrow\frac{4}{5}< x< 2\)
Th2 : \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}\Rightarrow\hept{\begin{cases}2< x\\\frac{4}{5}>x\end{cases}}}\)\(\Rightarrow x\in\varnothing\)
Vậy \(\frac{4}{5}< x< 2\)