Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 5 + 52 + 53 + ... + 52016
= (5 + 52) + (53 + 54) + ...... + (52015 + 52016)
= 5.(1 + 5) + 53.(1 + 5) + ....... + 52015.(1 + 5)
= 5.6 + 53.6 + ...... + 52015.6
= 6.(5 + 53 + ...... + 52016) chia hết cho 6
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
1, a,b ko chia hết cho 3 nhưng có cùng số dư khi chia cho 3
=> a,b cùng chia 3 dư 1 hoặc 2
sau đó xét 2 TH;
=> ab chia 3 dư 1 => ab-1 là bội của 3 (ĐPCM)
S = 5 + 52 + 53 + ......... + 52006
5S = 52 + 53 + 54 + .......... + 52007
5S - S = ( 52 + 53 + 54 + .......... + 52007) - ( 5 + 52 + 53 + ......... + 52006 )
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
a)\(S=5+5^2+5^3+.....+5^{2006}\Rightarrow5S=5^2+5^3+5^4+\)\(....+5^{2007}\)
\(\Rightarrow5S-S=\left(5^2+5^3+5^4+....+5^{2007}\right)-\left(5+5^2+5^3+.....+5^{2006}\right)\)
\(\Rightarrow4S=5^{2007}-5\Rightarrow S=\frac{5^{2007}-5}{4}\)
bn tích cho mik trước đi rùi mik làm cho