K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2015

nhiều v~~~, dễ mà lp 8 ? 

1.Rút gọn biểu thức: 2y-x-{2x-y-[y+3x-(5y-x)]} với x=a2+2ab+b2,y=a2-2ab+b2 2.Thực hiện phép tính: 3xn(4xn-1)-2xn-1(6xn-2-1) 3.Rút gọn biểu thức: a)10n+1-6.10n b)90.10k-10k+2+10k+1 c)2,5.5n-3+5n-6.5n-1 4.a)Chứng minh rằng 210+211+212chia hết cho 7 b)Viết 7.32 thành tổng của ba lũy thừa cơ số 2 với các số mũ là ba số tự nhiên liên tiếp 5.Tình 3 1/117.1/119-4/117.5 11/119-5/117.119+8/39 6.Tính giá trị...
Đọc tiếp

1.Rút gọn biểu thức:

2y-x-{2x-y-[y+3x-(5y-x)]} với x=a2+2ab+b2,y=a2-2ab+b2

2.Thực hiện phép tính:

3xn(4xn-1)-2xn-1(6xn-2-1)

3.Rút gọn biểu thức:

a)10n+1-6.10n

b)90.10k-10k+2+10k+1

c)2,5.5n-3+5n-6.5n-1

4.a)Chứng minh rằng 210+211+212chia hết cho 7

b)Viết 7.32 thành tổng của ba lũy thừa cơ số 2 với các số mũ là ba số tự nhiên liên tiếp

5.Tình 3 1/117.1/119-4/117.5 11/119-5/117.119+8/39

6.Tính giá trị x15-8x14+8x13-8x12+...-8x2+8x-5 với x=7

7.Rút gọn (a+b+c)(a2+b2+c2-ab-bc-ca)

8.Chứng minh hằng đẳng thức:

(a2+b2+c2-ab-bc-ca)(a+b+c)

=a(a2-bc)+b(b2-ca)+c(c2-ab)

9.Chứng minh hằng đẳng thức:

(100+a)(100+b)=(100+a+b).100+ab

Từ đó suy ra quy tắc nhân nhẩm hai số lớn hơn 100 một chút

10.Hãy xây những quy tắc nhân nhẩm hai số nhỏ hơn 100 một chút dựa vào hằng đẳng thức:

(100-a)(100-b)=(100-a-b).100+ab

11.Rút gọn biểu thức:(x+a)(x+b)(x+c)

biết rằng a+b+c=6

ab+bc+ca=-7

abc=-60

2
20 tháng 11 2019

4)

a) Ta có \(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+4\right)=2^{10}\cdot7⋮7\)

Vậy: \(2^{10}+2^{11}+2^{12}\) chia hết cho 7(đpcm)

b) Ta có: 7*32=224=25+26+27

20 tháng 11 2019

7: Kết quả là \(a^3+b^3+c^3\)

1 tháng 1 2018

a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)

\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2}{x^2+x+1}-\dfrac{1}{x-1}\)

\(=\dfrac{x^2+2+2\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{1}{x^2+x+1}\)

b) \(\dfrac{9}{x^3-9x}-\dfrac{-1}{x+3}\)

\(=\dfrac{9}{x\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}\)

\(=\dfrac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\)

c) \(\dfrac{x^3-8}{5x+10}.\dfrac{x^2+4x}{x^2+2x+4}\)

\(=\dfrac{x\left(x-2\right)\left(x^2+2x+4\right)\left(x+4\right)}{5\left(x+2\right)\left(x^2+2x+4\right)}\)

\(=\dfrac{x\left(x-2\right)\left(x+4\right)}{5\left(x+2\right)}\)

d) \(\dfrac{5x+10}{4x-8}.\dfrac{4-2x}{x+2}\)

\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}.\dfrac{2\left(2-x\right)}{x+2}\)

\(=-\dfrac{10\left(x+2\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}\)

\(=-\dfrac{5}{2}\)

e) \(\dfrac{\left(x-13\right)^2}{2x^5}.\dfrac{-3x^2}{x-13}\)

\(=\dfrac{x-13}{2x^3}.\dfrac{-3}{1}\)

\(=\dfrac{-3\left(x-13\right)}{2x^3}\)

g) \(\dfrac{x^2+6x+9}{1-x}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)

\(=-\dfrac{\left(x+3\right)^2}{x-1}.\dfrac{\left(x-1\right)^2}{2\left(x+3\right)^2}\)

\(=-\dfrac{\left(x+3\right)^2\left(x-1\right)^2}{2\left(x-1\right)\left(x+3\right)^2}\)

\(=-\dfrac{x-1}{2}\).

1: \(4a^2b^4-c^4d^2\)

\(=\left(2ab^2-c^2d\right)\left(2ab^2+c^2d\right)\)

4: \(\left(a+b\right)^3-\left(a-b\right)^3\)

\(=\left(a+b-a+b\right)\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

\(=2b\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(=2b\left(3a^2+b^2\right)\)

5: \(\left(a+b\right)^3+\left(a-b\right)^3\)

\(=a^3+b^3+3a^2b+3ab^2+a^3-3a^2b+3ab^2-b^3\)

\(=2a^3+6ab^2\)

\(=2a\left(a^2+3b^2\right)\)

22 tháng 9 2019

1, -3x4y + 6x3y - 3x2y

= -3x2y (x2 - 2x + 1)

= -3x2y(x - 1)2

2, 12x2 - 12xy + 3y2

= 3(4x2 - 4xy + y2)

= 3(2x - y)2

3, 20x4y2 - 20x3y3 + 5x2y4

= 5x2y2(4x2 - 4xy + y2)

= 5x2y2(2x - y)2

4, 16x5y2 - 16x4y3 + 4x3y4

= 4x3y2(4x2 - 4xy + y2)

= 4x3y2(2x - y)2

5, -12x4y + 12x3y2 - 3x2y3

= -3x2y(4x2 - 4xy + y2)

= -3x2y(2x - y)2

6, (a2 + 4)2 - 16a2

= (a2 + 4 - 4a)(a2 + 4 - 4a)

7, (a2 + 9)2 - 36a2

= (a2 + 32)2 - (6a)2

= (a2 + 32 - 6a)(a2 + 32 + 6a)

= (a2 - 6a + 9)(a2 + 6a + 9)

8, (a2 + 4b2)2 - 16a2b2

= (a2 + 4b2 - 4ab)(a2 + 4b2 + 4ab)

= (a2 - 4ab + 4b2)(a2 + 4ab + 4b2)

= (a - 2b)2(a + 2b)2

= (a2 - 4b2)4

Câu này có sai thì bạn thông cảm nhá!!!

9, 36a2 - (a2 + 9)2

= (6a)2 - (a2 + 9)2

=- (a2 - 6a + 9)(a2 + 6a + 9)

= -(a - 3)2(a + 3)2

= -(a2 - 9)4

Câu 10 giống câu 8 bạn nhé

8 tháng 4 2020

a) \(\left(x+2\right)^2-9\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x+2\right)^2-\left(3x-6\right)^2=0\)

\(\Leftrightarrow\left(x+2+3x-6\right)\left(x+2-3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(4x-4\right)=0\\\left(8-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

b)\(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)

\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\frac{23}{7}\end{matrix}\right.\)

c) \(\left(5x^2-2x+10\right)^2-\left(3x^2+10x-8\right)^2=0\)

\(\Leftrightarrow\left(5x^2-2x+10-3x^2-10x+8\right)\left(5x^2-2x+10+3x^2+10x-8\right)=0\)

\(\Leftrightarrow\left(2x^2-5x+18\right)\left(8x^2+8x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=3\end{matrix}\right.\)

13 tháng 4 2020

Câu c sai một tí, chắc nhầm =))

15 tháng 8 2017

1.

= 4x\(^{^{ }2}\)-4x-9x+9

=4x(x-1)-9(x-1)

=(4x-9)(x-1)

15 tháng 8 2017

2.

=5x\(^2\)+5x+12x+12

=5x(x+1)+12(x+1)

=(5x+12)(x+1)

4 tháng 9 2017

hu hu hu giúp mk vs

mai mk đi học rùi hu hu hu

\(1.a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

=\(a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

=\(a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

=\(a^4-b^4\)=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)

3 tháng 9 2017

help me!!!khocroi

Bài 65 nâng cao và phát triển toán 8 tập 1 trang 18

29 tháng 5 2018

\(A=\left(2^2+4^2+...+100^2\right)-\left(1^2+3^2+...+99^2\right)\)

\(A=2^2-1^2+4^2-3^2+...+100^2-99^2\)

\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

\(A=1\left(1+2\right)+1\left(3+4\right)+....+1\left(99+100\right)\)

\(A=1+2+3+4+....+99+100\)

A=5050

\(B=3^8.7^8-\left(21^4-1\right)\left(21^4+1\right)\)

\(B=\left(3.7\right)^8-\left(21^8-1\right)\)

\(B=21^8-21^8+1\)

B=1

mà A=5050

⇒ A>B