K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+...+\dfrac{1}{2023\cdot4048}\)

\(=\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4046\cdot4048}\)

\(=\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4046}-\dfrac{1}{4048}\)

\(=\dfrac{1}{4}-\dfrac{1}{4048}=\dfrac{1012-1}{4048}=\dfrac{1011}{4048}\)

22 tháng 6 2024

\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+\dfrac{1}{4\cdot10}+...+\dfrac{1}{2023\cdot4048}\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2023\cdot2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2024}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1012-1}{2024}\)

\(=\dfrac{1011}{4048}\)

27 tháng 4 2023

\(\dfrac{1}{11-2014}\)bỏ số 1 nha mn

ai cứu em 1 mạng đi cần gấp lắm làm rõ chút nha 

1 tháng 5 2017

\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{1}{2012\cdot1342}\\ =\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+...+\dfrac{3}{2012\cdot4026}\\ =\dfrac{6}{2\cdot4}+\dfrac{6}{4\cdot6}+\dfrac{6}{6\cdot8}+...+\dfrac{6}{4024\cdot4026}\\ =3\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4024\cdot4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\\ =3\cdot\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\\ =3\cdot\dfrac{1}{2}-3\cdot\dfrac{1}{4026}\\ =1,5-\dfrac{3}{4026}< 1,5\)

Vậy \(A< 1,5\left(đpcm\right)\)

8 tháng 5 2017

C.mơn bn nhìu nạ!!!

8 tháng 5 2018

\(\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{1}{2012.1342}\)

\(=\frac{3}{1.4}+\frac{3}{2.6}+\frac{3}{3.8}+...+\frac{3}{2012.4026}\)

\(=\frac{6}{2.4}+\frac{6}{4.6}+\frac{6}{4.8}+...+\frac{6}{4024.4026}\)

\(=3\cdot\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{4024.4026}\right)\)

\(=3\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{4024}-\frac{1}{4026}\right)\)

\(=3\cdot\left(\frac{1}{2}-\frac{1}{4026}\right)\)

\(=3\cdot\frac{1}{2}-3\cdot\frac{1}{4026}\)

\(=1,5-\frac{3}{4026}< 1,5\)

11 tháng 5 2017

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...............+\dfrac{1}{2012.1342}\)

\(A=\dfrac{3}{1.4}+\dfrac{3}{2.6}+\dfrac{3}{3.8}+...........................+\dfrac{3}{2012.4026}\)

\(A=\dfrac{6}{2.4}+\dfrac{6}{4.6}+\dfrac{6}{6.8}+..........................+\dfrac{6}{4024.4026}\)

\(A=3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...................+\dfrac{2}{4024.4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+....................+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

\(A=3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

\(A=3.\dfrac{1}{2}-3.\dfrac{1}{4026}\)

\(A=1,5-\dfrac{3}{4026}< 1,5\)

11 tháng 5 2017

Ta có

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{1}{2012.1342}\)

A = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{2.6}\) + \(\dfrac{3}{3.8}\) + ... + \(\dfrac{3}{2012.4026}\)

A = \(\dfrac{6}{2.4}\) + \(\dfrac{6}{4.6}\) + \(\dfrac{6}{6.8}\) + ... + \(\dfrac{6}{4024.4026}\)

A = \(3\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{4024.4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{4024}-\dfrac{1}{4026}\right)\)

A = \(3\left(\dfrac{1}{2}-\dfrac{1}{4026}\right)\)

A = 3.\(\dfrac{1}{2}\) - 3.\(\dfrac{1}{4026}\)

A = 1,5 - \(3.\dfrac{1}{4026}\) < 1,5

=> A < 1,5

=> đpcm

 

11 tháng 5 2017

\(A=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{2.8}\)\(+\).........\(+\)\(\frac{1}{2012.1342}\)\(< 1,5\)

\(=\)\(\frac{3}{1.4}\)\(+\)\(\frac{3}{2.6}\)\(+\)\(\frac{3}{3.8}\)\(+\)............\(+\)\(\frac{3}{2012.4026}\)

\(=\)\(\frac{6}{2.4}\)\(+\)\(\frac{6}{4.6}\)\(+\)\(\frac{6}{6.8}\)\(+\)..............\(+\)\(\frac{6}{4024.4026}\)

\(=\)\(3.\)\(\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...........+\frac{2}{4024.4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{4024}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\left(\frac{1}{2}-\frac{1}{4026}\right)\)

\(=\)\(3.\)\(\frac{1}{2}\)\(-\)\(3.\)\(\frac{1}{4026}\)

\(=\)\(1,5\)\(-\)\(\frac{3}{4026}\)\(< \)\(1,5\)

Vậy \(A< 1,5\)