Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(\frac{1}{7}.\frac{-3}{8}+\frac{-13}{8}.\frac{1}{7}\)
\(=\frac{1}{7}.\left[\left(-\frac{3}{8}\right)+\left(-\frac{13}{8}\right)\right]\)
\(=\frac{1}{7}.\left(-2\right)\)
\(=-\frac{2}{7}.\)
Chúc bạn học tốt!
Nhiều thế :( Làm 1,2 câu thôi nhé
a) \(\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\) (bị mất nét nhưng vẫn nhìn ra là số 12 nhỉ?)
b) \(\frac{-2}{5}+\frac{7}{21}=\frac{-42}{105}+\frac{35}{105}=\frac{-7}{105}=\frac{-1}{15}\)
\(a)\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}\)
\(=\dfrac{18}{24}+\dfrac{12}{24}+\left(-\dfrac{5}{24}\right)\)
\(=\dfrac{18+12+\left(-5\right)}{24}\)
\(=\dfrac{25}{24}\)
\(b)\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}.\dfrac{-2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}\)
\(=\dfrac{5}{7}\left(\dfrac{-2}{13}+\dfrac{-11}{13}+\dfrac{13}{13}\right)\)
\(=\dfrac{5}{7}.0=0\)
\(c)\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}\)
\(=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}\)
\(=1+1+\dfrac{1}{2}\)
\(=2\dfrac{1}{2}\)
\(d)\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{38}{51}+\dfrac{306}{714}\)
\(=\dfrac{315}{714}+\dfrac{238}{714}+\dfrac{532}{714}+\dfrac{306}{714}\)
\(=\dfrac{1391}{714}\)
a)\(\dfrac{3}{4}+\dfrac{6}{12}-\dfrac{5}{24}=\dfrac{18}{24}+\dfrac{12}{24}-\dfrac{5}{24}=\dfrac{25}{24}\)
b)\(\dfrac{-5}{7}.\dfrac{2}{13}-\dfrac{5}{7}.\dfrac{11}{13}+\dfrac{5}{7}=\dfrac{5}{7}\left(\dfrac{-2}{13}-\dfrac{11}{13}+1\right)=\dfrac{5}{7}.0=0\)
c)\(\dfrac{27}{23}+\dfrac{5}{21}+\dfrac{1}{2}-\dfrac{4}{23}+\dfrac{16}{21}=\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=2,5\)
d)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}.\dfrac{20}{15}+\dfrac{3}{7}=\dfrac{15}{34}+\left(\dfrac{1}{3}+\dfrac{38}{51}+\dfrac{3}{7}\right)=\dfrac{15}{34}+\dfrac{538}{357}=\dfrac{1391}{714}\)
Bài 1:
a) \(\left(\frac{1}{2}\right)^2\) và \(\left(\frac{1}{2}\right)^5\)
Ta có: \(\left(\frac{1}{2}\right)^2=\frac{1}{4}.\)
\(\left(\frac{1}{2}\right)^5=\frac{1}{32}.\)
Vì \(\frac{1}{4}< \frac{1}{32}.\)
=> \(\left(\frac{1}{2}\right)^2< \left(\frac{1}{2}\right)^5.\)
b) \(\left(2,4\right)^3\) và \(\left(2,4\right)^2\)
Ta có: \(\left(2,4\right)^3=13,824.\)
\(\left(2,4\right)^2=5,76.\)
Vì \(13,284>5,76.\)
=> \(\left(2,4\right)^3>\left(2,4\right)^2.\)
c) \(\left(-1\frac{1}{2}\right)^2\) và \(\left(-1\frac{1}{2}\right)^3\)
Ta có: \(\left(-1\frac{1}{2}\right)^2=\left(-\frac{3}{2}\right)^2=\frac{9}{4}.\)
\(\left(-1\frac{1}{2}\right)^3=\left(-\frac{3}{2}\right)^3=-\frac{27}{8}.\)
Vì số dương luôn lớn hơn số âm nên \(\frac{9}{4}>-\frac{27}{8}.\)
=> \(\left(-1\frac{1}{2}\right)^2>\left(-1\frac{1}{2}\right)^3.\)
Chúc bạn học tốt!
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
a) Ta có: \(\frac{3}{8}-\frac{1}{5}+\frac{3}{40}\)
\(=\frac{15}{40}-\frac{8}{40}+\frac{3}{40}\)
\(=\frac{10}{40}=\frac{1}{4}\)
b) Ta có: \(\frac{21}{4}\cdot\frac{3}{8}+\frac{43}{4}\cdot\frac{3}{8}-4\cdot\frac{1}{2}\)
\(=\frac{3}{8}\left(\frac{21}{4}+\frac{43}{4}\right)-2\)
\(=\frac{3}{8}\cdot16-2\)
\(=6-2=4\)
c) Ta có: \(\frac{-5}{9}+\frac{7}{15}+\frac{-2}{11}+\frac{4}{-9}+\frac{8}{15}\)
\(=\left(\frac{-5}{9}+\frac{-4}{9}\right)+\left(\frac{7}{15}+\frac{8}{15}\right)+\frac{-2}{11}\)
\(=-1+1+\frac{-2}{11}\)
\(=\frac{-2}{11}\)
d) Ta có: \(125\%\cdot\left(\frac{-1}{2}\right)^2:\left(1\frac{5}{6}-1.5\right)+2016^0\)
\(=\frac{5}{4}\cdot\frac{1}{4}:\left(\frac{11}{6}-\frac{3}{2}\right)+1\)
\(=\frac{5}{16}\cdot3+1\)
\(=\frac{15}{16}+\frac{16}{16}=\frac{31}{16}\)
a) (-0,125)3 . (-8) = (-0,125). (-0,125)2 . (-8) = [(-0,125) . (-8)] . (-0,125)2 = 1.1/64 = 1/64
b) \(\frac{27^{15}}{9^{21}}=\frac{\left(3^3\right)^{15}}{\left(3^2\right)^{21}}=\frac{3^{45}}{3^{42}}=3^3=27\)
c) \(\left(-2,5\right)^3+\frac{2496^5}{\left(-832\right)^5}-\frac{98^{17}}{98^{16}}=-\frac{125}{8}+\left(-243\right)-98=-\frac{2853}{8}\)
d) \(\left(1-\frac{1}{3}-\frac{1}{6}\right)^2\cdot\left(16^{37}:2^{145}-1963^0\right)=\left(\frac{6}{6}-\frac{2}{6}-\frac{1}{6}\right)^2\left(16^{37}:2^{145}-1963^0\right)\)
\(\left(\frac{1}{2}\right)^2\cdot7=\frac{1}{4}\cdot7=\frac{7}{4}\)
a) \(\left(-0,125\right)^3.\left(-8\right)=\left(\frac{-1}{8}\right)^3.\left(-8\right)=\left(\frac{-1}{8}\right)^3\div\left(\frac{-1}{8}\right)=\left(\frac{-1}{8}\right)^2=\frac{1}{64}\)
b) \(27^{15}\div9^{21}=\left(3^3\right)^{15}\div\left(3^2\right)^{21}=3^{45}\div3^{42}=3^3=27\)
c) \(\left(-2,5\right)^3+2496^5\div\left(-832\right)^5-98^{17}\div98^{16}=\left(\frac{-5}{2}\right)^3-3^5-98\)
\(=\left(\frac{-125}{8}\right)-243-98=\frac{-2853}{8}\)
d) \(\left(1-\frac{1}{3}-\frac{1}{6}\right).\left(16^{37}\div2^{125}-1963^0\right)=\frac{1}{2}.\left[\left(2^4\right)^{37}\div2^{125}-1\right]\)
\(=\frac{1}{2}.\left[2^{148}\div2^{125}-1\right]=\frac{1}{2}.\left[2^{23}-1\right]=\frac{2^{23}-1}{2}\)