Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn dặt x^2+3x+5 là y nhé:
phương trình<=> 8y^2+7y-15
đến đó tìm được y tìm tiếp x nhé!
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
hc tốt
Bài 1
1.(x-3)(x+2)-x(x-7)=15
\(\Leftrightarrow x^2+2x-3x-6-x^2+7x=15\)
\(\Leftrightarrow-6+6x=15\)
\(\Leftrightarrow6x=15+6\) =21
\(\Rightarrow x=\dfrac{21}{6}=3,5\)
2.(x-5)(x+5)+x(3-x)=20
\(\Leftrightarrow x^2-25+3x-x^2=20\)
\(\Leftrightarrow-25+3x=20\)
\(\Leftrightarrow3x=20+25=45\)
\(\Rightarrow x=\dfrac{45}{3}=15\)
3.(x-7)2-x(2+x)=-7
\(\Leftrightarrow x^2-14x+49-2x-x^2=-7\)
\(\Leftrightarrow-16x+49=-7\)
\(\Leftrightarrow-16x=-7-49=-56\)
\(\Rightarrow x=\dfrac{-56}{-16}=\dfrac{7}{2}=3,5\)
Tiếp bài 1
4.(x-4)2-(x+4)(x-4)=-16
\(\Leftrightarrow x^2-8x+16-x^2-16=-16\)
\(\Leftrightarrow-8x=-16\)
\(\Rightarrow x=\dfrac{-16}{-8}=2\)
5.(x-5)(x+5)-x(2-3x)=4x2-7
\(\Leftrightarrow x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-25-2x+3x^2=4x^2-7\)
\(\Leftrightarrow4x^2-4x^2-2x=-7+25\)
\(\Leftrightarrow-2x=18\)
\(\Rightarrow x=\dfrac{18}{-2}=-9\)
1/ \(A=3\left(x+1\right)^2-\left(x+3\right)^2\)
\(=3\left(x^2+2x+1\right)-\left(x^2+6x+9\right)\)
\(=3x^2+6x+3-x^2-6x-9\)
\(=2x^2-6\)
Vậy biểu thức A vẫn phụ thuộc vào biến -_-
2/ \(B=\left(x-2\right)^2-\left(x-4\right)x\)
\(=x^2-4x+4-x^2-4x\)
\(=4\)
Vậy biểu thức B không phụ thuộc vào biến (đpcm)
3/ \(C=3\left(x+2\right)^2-3\left(x^2-4x\right)\)
\(=3\left(x^2+4x+4\right)-3x^2+12x\)
\(=3x^2+12x+12-3x^2+12x\)
\(=24x+12\)
Vậy biểu thức C vẫn phụ thuộc vào biến -_-
4/ \(D=3x\left(x-2\right)\left(x+2\right)-x\left(3x+3\right)\)
\(=3x\left(x^2-4\right)-3x^2-3x\)
\(=3x^3-12x-3x^2-3x\)
\(=3x^3-3x^2-15x\)
Vậy biểu thức D vẫn phụ thuộc vào biến -_-
5/ \(E=x^2-\left(x+1\right)\left(x-1\right)+5\)
\(=x^2-\left(x^2-1\right)+5\)
\(=x^2-x^2+1+5\)
\(=6\)
Vậy biểu thức E không phụ thuộc vào biến.
Đặt \(\left(x^2+3x+5\right)=T\)
\(\Rightarrow8\cdot T^2+7T-15=0\)
\(\Rightarrow8\cdot T^2-8T+15T-15=0\Rightarrow\left(T-1\right)\cdot\left(8T-+15\right)=0\)
\(\Rightarrow t=1;-\frac{15}{8}\)
Thay \(\left(x^2+3x+5\right)=T\) rồi giải tiếp ta thấy không có x thỏa mãn