Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100+50:2+75+200:2+400:2+500
= 100 + 25 + 75 + 100 + 200 + 500
= 100 + 100 + 100 + 200 + 500
= 500 + 500
= 1000
100 + 50 : 2 + 75 + 200 : 2 + 400 : 2 + 500
= 100 + 25 + 75 + 100 + 200 + 500
= 125 + 75 + 100 + 200 + 500
= 200 + 100 + 200 + 500
= 300 + 200 + 500
= 500 + 500
= 1000
200 + 100 : 2 + 200 : 10 + 60 : 2 + 200 : 2
= 200 + 50 + 20 + 30 + 100
= 250 + 20 + 30 + 100
= 250 + 50 + 100
= 300 + 100
= 400
\(\dfrac{75^{50}.2^{100}}{100^{50}.9^{25}}=\dfrac{\left(25.3\right)^{50}.2^{100}}{\left(25.4\right)^{50}.\left(3^2\right)^{25}}=\dfrac{25^{50}.3^{50}.2^{100}}{25^{50}.4^{50}.3^{50}}=\dfrac{25^{50}.3^{50}.2^{100}}{25^{50}.\left(2^{2^{ }}\right)^{50}.3^{50}}=\dfrac{25^{50}.3^{50}.2^{100}}{25^{50}.2^{100}.3^{50}}=1\)
\(\dfrac{75^{50}\cdot2^{100}}{100^{50}\cdot9^{25}}=\dfrac{25^{50}\cdot3^{50}\cdot4^{50}}{25^{50}\cdot4^{50}\cdot3^{50}}=1\)
\(\dfrac{75^{50}.2^{100}}{100^{50}.9^{25}}=\dfrac{\left(25.3\right)^{50}.2^{100}}{\left(25.4\right)^{50}.\left(3^2\right)^{25}}=\dfrac{25^{50}.3^{50}.2^{100}}{\left(25^{50}\right).\left(2^2\right)^{50}.\left(3^2\right)^{25}}=\dfrac{25^{50}.3^{50}.2^{100}}{25^{50}.2^{100}.3^{50}}=1\)
\(\dfrac{75^{50}.2^{100}}{100^{50}.9^{25}}\)
\(=\dfrac{\left(3.5^2\right)^{50}.\left(2^2\right)^{50}}{\left(2^2.5^2\right)+\left(3^2\right)^{50}}\)
\(=\dfrac{ \left(3.25\right)^{50}.4^{50}}{\left(4.25\right)^{50}.3^{50}}\)
\(=\dfrac{3^{50}.25^{50}.4^{50}}{4^{50}.25^{50}.3^{50}}=1\)
Ta có:
\(A=100^2+200^2+300^2+...+5000^2\)
\(\Rightarrow A=\left(1.100\right)^2+\left(2.100\right)^2+\left(3.100\right)^2+...+\left(50.100\right)^2\)
\(\Rightarrow A=1^2.100^2+2^2.100^2+3^2.100^2+...+50^2.100^2\)
\(\Rightarrow A=\left(1^2+2^2+3^2+...+50^2\right).100^2\)
\(\Rightarrow A=42925.100^2\)
\(\Rightarrow A=429250000\)
Vậy A = 429250000
Viết rối qá chả thấy j.
\(99^2vs9999^{10}\)
\(9999^{10}=\left(101\cdot99\right)^{10}=101^{10}\cdot99^{10}\)
Vì \(99^{10}>99^2=>99^2< 9999^{10}\)
a) Ta có: 2^91 = (2^13)^7 = 8192^7
5^35 = (5^5)^7 = 3125^7
Vì 8192 > 3125 nên 8192^7 > 3125^7
Vậy 2^91 > 5^35
b) Ta có: 9999^10 = 99^10 . 101^10
Vì 99^2 < 99^10 nên 99^2 < 99^10 . 101^10
Vậy 99^2 < 9999^10
c) Ta có: 2^300 = (2^6)^50 = 64^50
3^200 = (3^4)^50 = 81^50
Vì 49 < 64 < 81 nên 49^50 < 64^50 < 81^50
Vậy 49^50 < 2^300 < 3^200
d) 9^3/25^3 = (9/25)^3
3^6/2^12 = (3^2)^3/(2^4)^3 = 9^3/16^3 = (9/16)^3
Vì 9/25 < 9/16 nên (9/25)^3 < (9/16)^3
Vậy 9^3/25^3 < 3^6/2^12.
Đáp án :
8+2+10x2+70:2+35+100:2+50:2+25+400:2+200:2+100:2+50+400:2+200:2+100:2+50:2+25
= 1000
Hok tốt
Trả lời:
= 1000
( K cho mk nha )
~HT~